PLANCK

PLANCK

The European mission to map the Cosmic Microwave Background

- Scientific context
- Current state of CMB experiments
- Planck payload and spacecraft

Science

Looking back in time

The CMB as seen by COBE

The CMB as seen by Planck

Simulated CDM w=1 model, DQ = 10', $DT/T = 2x10^{-6}$

Foreground fluctuation levels

The CMB as seen by Planck

Simulated CDM w=1 model, DQ = 10', $DT/T = 2x10^{-6}$

The CMB as seen by Planck

Main Cosmological Parameters

- Ω_0 Cosmological total density parameter
- H_o Hubble constant
- Ω_b Baryon density
- Ω_c Cold dark matter density
- A Cosmological constant
- n_s Spectral index of scalar perturbations
- Q Amplitude of fluctuation spectrum
- r Ratio of Gravitational wave to density perturbations
- τ_r Residual optical depth due to reionisation

Cosmological Parameters in the CMB

W.Hu 2/98

The shape of the power spectrum depends sensitively on the value of cosmological parameters

Science with accurate cosmological parameters

- Geometry of Universe
- Age of Universe, H_0 , Ω_0 , Λ , & stellar evolution
- Primordial nucleosynthesis:
 - abundance determinations
 - chemical evolution of galaxies
- physics beyond standard model
- Evolution of structure and nature of dark matter
- Dynamical estimates of Ω_0
- Galaxy redshift surveys

Accuracy of recovery of fundamental (D) parameters

Maximum likelihood estimates in an eight dimensional parameter space (Ω_0 , h, Ω_b , n_s, Q_{rms}, n_s/n_t , Λ , τ_{reion}) Efstathiou 1997

CMB anisotropy experiments

- Ground-based: single-dish, interferometers
- Balloon-based: BOOMERANG, MAXIMA, TOPHAT, ...
- Space-based: COBE, MAP, Planck

Experiments and foregrounds

BOOMERANG: Netterfield et al 2001

MAXIMA: Lee et al 2001

Analysis status

Wang, Tegmark and Zaldarriaga 2001

The need for accuracy

Efstathiou et al 2001

Main Observational Objective of PLANCK

To image the whole sky at wavelengths near the peak of the spectrum of the Cosmic Microwave Background Radiation Field (CMB), with an instrument sensitivity $\Delta T/T \sim 10^{-6}$, an angular resolution ~5 arcminutes, wide frequency coverage, and excellent rejection of systematics .

Predicted power spectrum recovery

Both the temperature and the polarisation angular power spectra are accurately recovered

Polarisation power spectrum recovery

From: Hu 2001

Polarisation power spectrum recovery

From: Challinor 2001

PLANCK

Recovery of cosmological parameters

Marginalised errors for LCDM

Parameter	Temp. only	Temp. & Pol.
h	1.1	0.13
Ω_{m}	1.2	0.14
Ω_{Λ}	0.96	0.11
$\ln(\Omega_{\rm B}h^2)$	0.035	0.01
n _s	0.041	0.0008
T/S	0.35	0.012
τ	0.59	0.004

Target model: LCDM with h=0.65, $\Omega_{\rm m}=0.35$, $\Omega_{\Lambda}=0.65$, $\Omega_{\rm B}=0.05$, $n_{\rm S}=1$, T/S=0, $\tau=0.05$;

Eisenstein, Hu & Tegmark 1998

Recovery of cosmological parameters

Efstathiou and Bond 1999

		MAP		Planck			
Param.	No const.	$r = -7n_t$	r=0	No const.	$r = -7n_t$	<i>r</i> = 0	
b⁄ b	0.052	0.028	0.030	0.0064	0.0056	0.0056	
c/ c	0.097	0.028	0.031	0.0042	0.0042	0.0039	
Q	0.0066	0.047	0.005	0.0013	0.0010	0.0011	
r	0.49	0.043		0.33	0.023		
n_s	0.03	0.0061	0.0098	0.0049	0.0032	0.0042	
n_t	0.56	0.0061		0.40	0.0032		
h/h	0.082	0.02	0.028	0.0045	0.0045	0.0041	
	0.16	0.049	0.068	0.012	0.012	0.011	

Key Scientific Objectives (1)

- CMB anisotropy maps to an accuracy $\Delta T/T \sim 10^{-6}$, on angular scales larger than 10 arcminutes
- Cosmological parameters, H_0 , Ω_0 , Ω_b , to a precision of a few percent
- Tests of inflationary models of the early Universe
- Search for non-gaussianity/topological defects
- Initial conditions for formation of large-scale structure
- Nature of dark matter

Key Scientific Objectives (2)

- A wide spectrum of non-CMB science:
 - Detection of Sunyaev-Zeldovich effect in thousands of rich clusters of galaxies
 - -Extragalactic sources and backgrounds
 - Maps of Galaxy at frequencies 30 1000 GHz

Non-CMB Science highlights (1)

- Sunyaev-Zeldovich effect
 - Measurement of y in $> 10^4$ clusters
 - Cosmological evolution of clusters to z > 1
 - H_o and X-ray measurements, gas properties
 - Bulk velocities on scales > 300 Mpc
- Extragalactic sources
 - IR and radio galaxies
 - AGN's, QSO's, blazars
 - Evolution of galaxy counts to z > 1
 - Far-IR background fluctuations

Non-CMB Science highlights (2)

- Galactic studies
 - Dust properties
 - Cloud and cirrus morphology
 - Star forming regions
 - Cold molecular clouds
 - Maps of free-free and synchrotron emission
 - Cosmic ray distribution
 - Galactic magnetic field

Payload and Spacecraft

Netscape Hypertext Document

Observational Strategy

- Two successive all-sky surveys
- 1.5 metre aperture telescope
- wide frequency coverage (25 GHz 950 GHz)
- State-of-the-art detectors
- extreme attention to systematic effects

Planck Telescope

- Primary: 1.50 x 1.89 m ellipsoid (CFRP)
- Secondary: 1.02 x 1.04 m ellipsoid (CFRP)
- System:
 - 1.5 m circular projected aperture
 - Total MWFE<40 μm rms
 - Total $\varepsilon < 0.01$
- Reflectors will be developed by a Consortium of danish institutes led by the Danish Space Research Institute (PI: Dr. H.U. Norgaard-Nielsen)

Low Frequency Instrument

- Freq.: 30 -100 GHz
- Techn.: HEMT correlation receivers (56)
- Temp.: 20 K (Front-end), 300 K (Back-end)
- Ang. res.: 10' (100 GHz) to 33' (30 GHz)
- Temp. sens. (@100 GHz):
 ~12 μK
- PI: N. Mandolesi (CNR -Bologna)

Detectors & electronics

High Frequency Instrument

- Freq.: 100 -850 GHz
- Techn.: spider-web bolometers (50)
- Temp.: 0.1 K
- Ang. res.: 9.2' (100 GHz) t
 5' (850 GHz)
- Temp. sens. (@100 GHz):
 ~5 μK
- PI: J.L. Puget (IAS Orsay)

High Frequency Instrument

Spider-web bolometers (CalTech/JPL)

PLANCK

Filters (QMW)

Optical configuration

Calibration

- No on-board standards
- External calibrators:
 - FIRAS (0.1% on CMB temperature)
 - CMB dipole (~3 mK amplitude, known to ~10 mK)
 - CMB dipole modulation with orbital motion (~0.3 mK amplitude)
 - celestial sources
- Precise determination of beam patterns:
 - main beam using outer planets
 - mid- and far- side lobes using Sun, Moon, Earth, and Milky Way
- Goal: 1% photometric calibration

Predicted instrument characteristics

Telescope	1.5 m (projected aperture) aplanatic; shared focal plane; system emissivity 1%									
	Viewing direction offset 85° from spin axis									
Center Freq.	30	44	70	100	100	143	217	353	545	857
(GHz)										
Detector	HEMT LNA arrays			Bolometer arrays						
Technology										
Detector	~20 K			0.1 K						
Temperature										
Cooling	H ₂ sorption cooler			H ₂ sorption + 4 K J-T stage + Dilution cooler						
Requirements										
Number of	4	6	12	34	4	12	14	6	8	6
Detectors										
Angular	33	23	14	10	9.2	7.1	5	5	5	5
Resolution (')										
D T/T Sensitivity	1.6	2.4	3.6	4.3	2.0	2.2	3.5	14.0	140	6600
per res.element	(P)	(P)	(P)	(P)		(P)	(P)		(P)	
(12 months, 1 s ,										
10 ⁻⁶ units) *										

* (P) indicates sensitivity to linear polarisation

(Possible) distribution of integration time

N_obs

Key dates

- Start of spacecraft Phase B: mid-2001
- Start of spacecraft Phase C/D: end-2002
- Payload model deliveries: 2003-2004
- Launch: February 2007
- Insertion into orbit: June 2007
- Operations: 2007-end 2008
- Scientific product delivery: 2010

