
Astronomical Data Analysis Software and Systems XX
ASP Conference Series, Vol. 442
Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds.
c©2011 Astronomical Society of the Pacific

Efficient and Scalable Cross-Matching of (Very) Large Catalogs

François-Xavier Pineau, Thomas Boch, and Sébastien Derriere

CDS, Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS,
11 rue de l’Université, 67000 Strasbourg, France

Abstract. Whether it be for building multi-wavelength datasets from independent
surveys, studying changes in objects luminosities, or detecting moving objects (stel-
lar proper motions, asteroids), cross-catalog matching is a technique widely used in
astronomy. The need for efficient, reliable and scalable cross-catalog matching is be-
coming even more pressing with forthcoming projects which will produce huge cat-
alogs in which astronomers will dig for rare objects, perform statistical analysis and
classification, or real-time transients detection. We have developed a formalism and
the corresponding technical framework to address the challenge of fast cross-catalog
matching. Our formalism supports more than simple nearest-neighbor search, and han-
dles elliptical positional errors. Scalability is improved by partitioning the sky using
the HEALPix scheme, and processing independently each sky cell. The use of multi-
threaded two-dimensional kd-trees adapted to managing equatorial coordinates enables
efficient neighbor search. The whole process can run on a single computer, but could
also use clusters of machines to cross-match future very large surveys such as GAIA
or LSST in reasonable times. We already achieve performances where the 2MASS
(∼ 470M sources) and SDSS DR7 (∼ 350M sources) can be matched on a single ma-
chine in less than 10 minutes. We aim at providing astronomers with a catalog cross-
matching service, available on-line and leveraging on the catalogs present in the VizieR
database. This service will allow users both to access pre-computed cross-matches
across some very large catalogs, and to run customized cross-matching operations. It
will also support VO protocols for synchronous or asynchronous queries.

Introduction

The largest catalogs of astronomical sources built so far, e.g., the USNOB1, contain about
one billion sources. Projections for the LSST anticipate a number of unique sources about
three times greater after 5 years of exploitation. With a minimum of 6 parameters — identifier
(integer), positions (doubles) and associated errors (floats) — it will represent about 100 GB of
data.

The method used to cross-correlate such catalogs has to take into account the current
trend in computer hardware improvements: increasing and faster memory, more cores but stable
clock frequency, cheaper machines grouped in clusters. Therefore it has to be scalable with
its performance depending on both available machines and individual process efficiency. A
catalog cross-match task must thus be split into pieces of various sizes, which can be processed
independently on different threads (multi-threading) distributed on different machines (parallel
processing).

This article is organized as following: § 1 deals with the partitioning and multi-threading
of a cross-match task, § 2 with modified kd-tree for counterparts searches, § 3 with data loading,
and the § 4 presents some results.

85



86 Pineau, Boch, and Derriere

1. HEALPix Partitioning and Multi-Threaded Pixel Processing

HEALPix (Górski et al. 2005) is a hierarchical sky partitioning developed at NASA. At level 0,
the sky is divided into 12 pixels. Then, at each successive level, the pixels are divided into four
new pixels so that for a given level l, the number of pixels is Nl = 12 × 4l.

We use HEALPix to divide the sky into pixels that can be processed independently, one by
one on a single machine and simultaneously on a cluster of machines. The chosen HEALPix-
pixels level depends on several parameters, such as the density of sources in both catalogs and
the available memory. To cross-match the sources contained in a pixel of a catalog A with a
catalog B, we first load the sources of the catalog B which are in the pixel. In order not to
miss some correlations, we also have to load catalog B sources which are in an extra border
around the pixel (see Fig. 1). We then build a modified 2d-tree (see § 2) containing the sources

Figure 1. HEALPix pixels of level 1 and 0 for a two catalogs A and B. No to miss
some correlations, an extra border is required around the catalog B pixels.

retrieved from the catalog B. Then, for each catalog A source in the pixel, we perform a cone-
search query in the 2d-tree. The process is multi-threaded: we create a pool of threads and, until
all sources have been processed, we 1) take a worker from the pool, 2) fill the worker queue
with catalog A sources, 3) wake-up the worker thread for correlation and result writing and 4)
put back the worker in the pool, waiting for new sources to correlate.

2. Multi-Threaded Modified kd-tree

A kd-tree is an Euclidean space-partitioning data structure especially adapted for fast k-nearest-
neighbor (kNN) queries. We want the lightest possible data structure storing spherical coordi-
nates and allowing us to perform fast cone-search or kNN queries relying on angular distances.
The solution we have developed and adopted is a 2 dimensional kd-tree (2d-tree) stored in an
array for which we have modified the query algorithm. The two dimensions are the spherical
coordinates, α and δ. The creation of the tree is standard (see Fig. 2): the algorithm is a simple
quicksort with alternating sorted coordinate.

In a standard fixed radius 2d-tree query, the algorithm first goes down the tree to the leaf
node containing the target. It then backs up, and at each parent node it decides to go down the
other sub-tree if the disk — defined by the target and the radius of the query — overlaps the
rectangular area covered by the sub-tree (see Moore (1991) for more details). With spherical
coordinates, the area covered by a sub-tree is no longer rectangular, and the distance between the
target and a node is not Euclidean. We thus had to change the standard algorithm by computing
target–node angular distances — resorting to the Haversine formula — and implementing a
boolean function testing if a cone overlaps a range in α and δ.

The generation of a kd-tree is quite straightforward to multi-thread since each sub-tree is
built independently (see Fig. 2). Nevertheless, resorting to a multi-threaded sort algorithm for
the first nodes would even accelerate the process.



Efficient and Scalable Cross-Matching of Large Catalogs 87

α

δ
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

α

δ
α ≤ αS3

αS3

S3

αS3
≤ α

α

δ
δ ≤ δS10

δS10

S10

δS10
≤ δ

S3

δ ≤ δS8
δS8

S8

δS8
≤ δ

α

δ
α ≤ αS11

S11

≤ α

S10

α ≤ αS6

S6

≤ α

S3

α ≤ αS4

S4

≤ α

S8

α ≤ αS2

S2

≤ α

α

δ
S5 S11 S13 S10 S15 S6 S14 S3 S7 S4 S9 S8 S1 S2 S12

Thread 1

Thread 1 Thread 2

Thread 1 Thread 3 Thread 2 Thread 4

Figure 2. Multi-threaded creation of a 15 sources array 2d-tree.

3. HEALPix Indexed Binary File

An efficient cross-match requires an efficient way to retrieve the needed data: positions, posi-
tional errors if necessary, and possibly identifiers. Disk accesses are expensive operations and
to avoid too much head movement overhead it is better to access unfragmented data. The basic
ideas to optimize data loading are to read only the necessary data, to read them from contiguous
blocks, and in a binary format to avoid conversions. For fast access to the different sky cells’
contents, data have to be grouped by HEALPix pixels and the file must be indexed.

level 2 index file

Idx offset nSrcs

.

.

.

.

.

.

.

.

.

84 xxx xxx

.

.

.

.

.

.

.

.

.

Binary file

Block position

Block posErr

. . .

Figure 3. Indexed binary catalog file.

We have implemented an indexed binary file format which stores a catalog by blocks (Fig.
3). Each catalog file contains one block for identifiers, one block for positions, one block for
positional errors, and some other blocks. In each block, rows are sorted by the HEALPix pixel
indices of the sources they belong to, so that the pixels of different HEALPix levels are stored
contiguously in each block.

For each HEALPix level, for all pixels, an index file stores the index of the first row and the
number of rows the pixel contains. So for each block, a pixel on the sky maps to a contiguous
portion of the file, which is known perfectly thanks to the index files.



88 Pineau, Boch, and Derriere

4. Performances Tests

We have performed some tests on several large catalogs: SDSS DR7 (∼350M sources), 2MASS
(∼470M sources), and USNOB1 (∼1G sources).

Our code is full Java and tests have been performed on a unique machine running Ubuntu
10.04 with Java 1.6.0 20 and a sun 64-Bit JVM (Java Virtual Machine). The machine is a Dell
server with 24 GB of 1333 MHz RAM, two hyper-threaded Intel Xeon quad-cores at 2.27 GHz
(16 threads available) and a 10 000 rpm HDD. Results are presented Table 1.

Table 1. Results of large catalogs cross-correlation tests. d is the cone-search
aperture and dσ the distance in sigma when taking into account individual elliptical
errors on positions.

Catalogs d dσ nMatch exec. time

SDSS7 vs 2MASS 5′′ 49.2 M ∼9 min
SDSS7 vs 2MASS 5′′ 3.44 37.5 M ∼10 min
2MASS vs USNOB1 5′′ 583.3 M ∼30 min

All tests have been performed for a HEALPix level 3 (see Górski et al. 2005, Table 1)
with border pixels of level 9. The execution time includes: data loading, tree creation, cross-
correlation with (dσ not empty) or without individual elliptical errors on positions, writing of a
join file containing for each association the two sources identifiers and the cross-match distance.
The candidate selection criteria when using positional errors is described in Pineau et al. (2010).
On a similar machine with 2 hyper-threaded six-cores (24 threads available) the SDSS7 versus
2MASS cross-correlation execution time is under 7 minutes.

References

Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., &
Bartelmann, M. 2005, ApJ, 622, 759

Moore, A. W. 1991, An introductory tutorial on kd-trees, Tech. Rep. Technical Report No.
209, Computer Laboratory, University of Cambridge, Carnegie Mellon University, Pitts-
burgh, PA

Pineau, F.-X., Motch, C., Carrera, F., Della Ceca, R., Derriere, S., Michel, L., Schwope, A., &
Watson, M. G. 2010, ArXiv e-prints. 1012.1727


