Time in Aladin

Daniel Durand National Research Council Canada - CADC

Pierre Fernique Ada Nebot Observatoire Astronomique de Strasbourg - CDS

Aladin was originally designed to visualise astronomical data in terms of spatial coordinates. Based on the same technology, we have incorporated a new dimension in Aladin: the time. A new Aladin prototype, based on the core of Version 10, incorporates two new components: a "time view" window and a "time coverage" capability.

Vmag vs epoch observations for Tycho2 objects around Orion

The "Time View" window is a simple extension to Aladin's graphic window originally designed to handle longitude VS latitude plots. This new graphic mode is now capable of drawing scatter plots where the primary axis is time and the secondary axis is selected by the user and could use any of the accessible quantities like magnitude, flux, radial velocity, etc. This new graphic mode is fully interoperable with Aladin's spatial window so selected objects markers are visible on both windows simultaneously.

First issue

How does Aladin discover the time system of a given entity (format, scale, offset, observer location) from the VOTables or FITS files? As of today, there is NO time meta information standard.

→ Aladin prototype is using heuristics algorithms to "guess" the time fields and the associated reference systems. But this method is prompt to error.

→ A formal description using a TIMESYS tag in VOTable standard would ease tremendously this problem.

VOTable format

Ø CDS/J/AcA/58/163/catalog	
----------------------------	--

.Table J/AcA/58/163/catalog -assuming Time column 15 (proba=90.0%) timesys unknown (assuming TDB/Barycentric) -assuming RADEC in degrees column 1 for RA and 2 for DEC [RA=0 (proba=100.0%) DE=1 (proba=100.0%) PMRA=-1 (proba=0.0%) PMDEC=-1 (proba=0.0%)] -Coordinate system references found: ID="J2000" => eq FK5 Eq=J2000 => RA/DEC coordinate conversion not required: ref="J2000" => FK5(J2000.0) to ICRS -found CSV DATA (field sep=Tab record sep=\n) -Found 3 lines CVS header with dash separator -assuming Time format:JD timeOffset: 2450000.0

Aladin VOTable heuristic parser	r log for J/AcA/58/163/catalog

1		RA	_RAJ2000	Right ascension (FK5, Equinox=J2000.0) (co	deg	double	pos.eq.ra;meta.main
2		DE	_DEJ2000	Declination (FK5, Equinox=J2000.0) (compu	deg	double	pos.eq.dec;meta.m
3	\checkmark		recno	Record number assigned by the VizieR team		int	meta.record
4	\checkmark		n_Star	Simbad column added by the CDS		char	meta.note
5	\checkmark		Star	Cepheid ID (OGLE-LMC-CEP-NNNN)		char	meta.id;meta.main
6	\checkmark		Field	OGLE-III field (LMCNNN.N)		char	meta.id;obs.field
7	\checkmark		OGLE	OGLE-III database number		int	meta.id
8	\checkmark		Mode	Mode of pulsation		char	meta.code;src.var
9	\checkmark		RAJ2000	Right ascension, equinox J2000.0	"h:m:s"	char	pos.eq.ra
10	\checkmark		DEJ2000	Declination, equinox J2000.0	"d:m:s"	char	pos.eq.dec
11	\checkmark		<imag></imag>	? Intensity mean I-band magnitude	mag	float	phot.mag;em.opt.I
12	\checkmark		<vmag></vmag>	? Intensity mean V-band magnitude	mag	float	phot.mag;em.opt.V
13	\checkmark		Per	Period (longest period for double and triple	d	double	time.period
14	\checkmark		e_Per	Uncertainty of the period	d	double	stat.error
15		JD	TO	? Time of maximum brightness (HJD-2450000)	d	double	time.epoch
16	\checkmark		Iamp	? I-band amplitude (maximum-minimum)	mag	float	src.var.amplitude
17	\checkmark		R21	? Fourier coefficient R_21_		float	stat.fit.param
18	\checkmark		phi21	? Fourier coefficient {phi}_21_	rad	float	stat.fit.param
19	\checkmark		R31	? Fourier coefficient R_31_		float	stat.fit.param
20	\checkmark		phi31	? Fourier coefficient {phi}_31_	rad	float	stat.fit.param
21	\checkmark		LC	Plot the light curve		char	meta.ref.url
22			PerM	? Shortest (double mode) or Medium (triple	d	double	time.period

Second issue

In order to ease interoperability, which reference time system should we standardize on?

→ Aladin prototype uses JD(TDB,Barycentric)

Time coverage

The "time coverage" capability is based on the technology supporting the Multi-Ordered Coverage (MOCs), replacing the HEALPix space discretisation with a time scale instead. Thus the user is then able to manipulate the time coverage the same way he/she was able to manipulate the space coverage using the standard Aladin. So the user can perform time coverage manipulation like intersections or unions of different time coverages, generate new time coverage from catalog. For this to be possible, Aladin prototype is introducing a new version of MOC files dedicated for the time axis called T-MOC. Creating T-MOCs was made possible with a very simple modification of the basic MOC java library.

Third issue

What are the standards we should use to produce T-MOC which are interoperable? → Using JD(TDB,Barycentric,no offset) => requires Time conversion library \rightarrow Using 1 µs for order 29 T-MOC resolution hence covering 9133 years if we use JD=0 (Monday, 4713 B.C. Jan 1, 12:00:00.0) as a starting point. Note: for unknown system, the T-MOC will be created at a lower resolution for covering the system imprecision (typically 16min)

T-MOC comparison for HST image collections: HST-B, HST-V, HST-R, HST-SDSSr, HST-SDSSg

These new capabilities are **already implemented** in the Aladin Beta version available on the Aladin CDS Web site http://aladin.u-strasbg.fr