
Annotating
GAIA

Time Series
with

VO-DML
https://github.com/lmichel/vodml-lite-mapping

Laurent MICHEL - College Park - 2018

https://github.com/lmichel/vodml-lite-mapping

2 Ways of Seeing Things

Model

mapping

Votable
or other serialization

data

Model

mapping

existing votable

● Data can be put in a VOtable in a way
they can be mapped onto the model.

● Might put limitations on the VOTable
structure

● The mapping must be applicable to any
existing dataset.

● This impacts the mapping syntax
● The mapping has also to drive the parser

Mapping Any Existing VOTable

Model

existing votable

The Mapping Cat

● Mapping any model on any VOTable
is like squaring the circle.

● Should mix model elements with
directives for the parser

● But time domain gives us some
reasonable examples yet

The Basic Case

header
Pa

rs
er SparseCube

One instance
One Light Curve

The Mapping Cat

Ti
m

e

m
ag

ni
tu

de

The Case of the Day: GAIA

header
Pa

rs
er TimeSeries

One instance
Several Light Curves

The Mapping Cat

Ti
m

e

fil
te

r

VOTable content:
● One source
● 3 filters (G,BR, RP)
● Photométric points mixed in one <DATATABLE>
● One column “BAND” identifying the filter for each measurement

m
ag

ni
tu

de

Another Gaia Case ?

header
Pa

rs
er [TimeSeries]

. List of instances

. The number of
instances results from
the data grouping
. Each instance owns a
subset of the dada
rows

The Mapping Cat

Ti
m

e

M
ag

M
ag

Ti
m

e

So
ur

ce
 1

So
ur

ce
 2

And So Forth ...

header

The Mapping Cat

Source 1

Source 2

Source 3

header

The Mapping Cat

Sources
Ti

m
e

fil
te

r

m
ag

ni
tu

de
header

The Mapping Cat

Lite Syntax at a Glance

<COLLECTION>
a set of objects

<INSTANCE>
a set of key/object pairs

<VALUE>
An atomic value (string or numerical)

<ARRAY>
List of instances to be read in <DATATABLE>
One instance per row
This element must have one unique
<INSTANCE> as a child

<COMPOSITION>
Finite list of objects
E.g. contributors
<SET>
Set of root instances
Comes with a GROUPBY operator
Must be child of the root <TEMPLATES>

<FILTER>
Filter the values read in <DATATABLE>
Must be after the <INSTANCE> contained in a <ARRAY>

<FOREIGNKEY>
Not implemented yet

- Each one of these elements has a dmrole
- dmtypes are supported by not used yet

Compact Syntax

Example: STC time frame

dmrole=root indicates the VOTable Content

This VOTable contains one instance of class ts:SimpleTimeSeries

This VOTable contains a set of instances of class ts:SimpleTimeSeries
(work in progress)

<DATATABLE> Mapping

Each <DATATABLE> row is mapped as an instance of the class cube:Observable

Each <DATATABLE> row with band=RP is mapped as an instance of the class
cube:Observable

One Tag for Both Values and Literals

Value resolved as a literal

Value resolved by reference

If both ref and value attributes are present, ref is first resolved and then value
is taken in case of failure

Validation

https://github.com/lmichel/vodml-lite-mapping
Contributor are Welcome

● Mapping Validation
○ SimpleTimeSeries model
○ Gaia 3 bands time series
○ Ongoing tests on multi-source datasets

● Client Validation
○ See app1 talk
○ Everything is available on GitHub

https://github.com/lmichel/vodml-lite-mapping

Reading
VO-DML

Annotations
With
Java

https://github.com/lmichel/vodml-lite-mapping
Laurent MICHEL - College Park - 2018

https://github.com/lmichel/vodml-lite-mapping

The VO-DML Stack

model

Client

VOtable

Annotation process

Annotated VOTable

Annotation parsing

Science

This talk is focused
on the annotation
parsing whatever the
mapping syntax is

Client Expectations for Using Models

● Hiding the data complexity
○ Only see the model structure whatever the data are
○ Avoiding Inferences for Retrieving Data
○ No specific code for specific data sets

● A clear way to finally get the VOTable content
○ This feature is still a lack for the VOTable schema

● Python API (OL)
○ Victoria 2018 https://olaurino.gitlab.io/ivoa-dm-examples/

https://olaurino.gitlab.io/ivoa-dm-examples/

Java Client Expectation

● Avoiding Application Update
○ Adding new modules in Java implies software upgrades

■ Developers have to validate the upgrade
■ Users have to download it

● Parser Code Independent from any Particular Model
○ A unique parser for the VODML block
○ Paths leading to model nodes set by the caller

■ Something expressed with strings
■ Can be stored as external resources

Architecture

VOTable Instance
Builder

Mapping
Model

Mapping
parser

Data
parser

Data
Interface

M
od

el
 A

PI

Model API:
● Nothing specific to a model
● A reference to the root object
● A set of selectors to browse it

[DM role]

DM instance

No reference to a
specific model here

Internal Model

INSTANCE
role=root

COMPOSITION
role=role2

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
role=role31

INSTANCE
role=role4

INSTANCE
role=role41

INSTANCE
role=role42

What the parser did

Internal Model

INSTANCE
role=root

COMPOSITION
role=role2

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
role=role31

INSTANCE
role=role4

INSTANCE
role=role41

INSTANCE
role=role42

Node(role=role31) = Node(role=root)
 ->Node(role=role2)
 ->Node(role=role3)
 ->Node(role=role31)

What the client does

What the parser did

Something Like This

vodmlParser = new VodmlParser(“Myvotable”);

if(vodmlParser.implements(“TSmodel”) {
 /* getting the position object */
 Element position = vodmlParser.element(“model:Source.Position”)
 ra = position.element(“Astro:position.lat”);
 dec = position.element(“Astro:position.long”);
 /* browsing the photometric points */

points = vodmlParser.element(“model:photometric.points”);
 for(int i=0 ; i<points.getLength() ; i++) {
 Element point = data.getValue(i);
 time = point.element(“Astro:mes.time”);
 mag = point.element(“Astro:mes.mag”);
 }
}

● In blue: Java words
● In black: VODML API code
● In “green” : Model related quantities, strings only

Resemblance to existing model

roles is purely coincidental.

Mapping Element Selectors

INSTANCE
role=role1

COLLECTION
searched.role

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
searched.role

INSTANCE
role=role4

INSTANCE
searched.role

INSTANCE
role=role42

getSubElement...Return one or all sub-element (s)matching the role

Mapping Element Selectors

INSTANCE
role=role1

COLLECTION
searched.role

INSTANCE
role=role21

ARRAY
role=role3

INSTANCE
role=role22

INSTANCE
searched.role

INSTANCE
role=role4

INSTANCE
searched.role

INSTANCE
role=role42

getChild...

getSubElement...

Return one or all child(ern) matching the role

Return one or all sub-element (s)matching the role

My API as it Is Now

Retrieving the list of contributors

Points onto the collection of contributors

Take all acknowledgements of all contributors

The dataset object is supposed to be unique

When Things Become Tricky

Observable
Let’s say a photometric point

Measure
Role = CoordMeasure.coord

1 2

● The 2 Measures have the same role.
● To know what is what, we have to check the dmtype (class

name) or to explore the inside of each instance

Time

Magnitude

When Things Become Tricky

Take the first photometric point Take all measures of that point

Explore the measure objects to see what they are

A Bit More Tricky

Time JD
dmrole=meas:CoordMeasure.coord
dmtype=coords:domain.time.JD

Date
dmrole="coords:domain.time.JD.date

● Isolating the timestamp date with selectors based on dmroles may be confusing

Frame

INSTANCE
meas:CoordMeasure.coord

VALUE
coords:domain.time.JD.date

INSTANCE
coords:Coordinate.frame

VALUE
coords:domain.time.JD.date

Very simplified model view

A Shortcut

● Bypassing Object Instantiation
○ No need to systematically build an instance for each row

■ E.g. for plotting data

○ Knowing the dmrole of each column must be enough
■ Simple time series example:

Column #1 has the role “coords:domain.time.JD.date”
Column #3 has the role “ts:Magnitude.value”

○ This allow the client to use its own readout engine
■ Mapping used to extract meta-data
■ Standard way to read data tables with roles set for some columns

Done/BeingDone/2Do

● Done
○ Works with SimpleTimeSeries model
○ Data filtering

● Being Done
○ Group by facility <SET groupby=”..”>

● Todo
○ Simplify the API
○ Implementing DMTypes
○ Foreign keys implementation

https://github.com/lmichel/vodml-lite-mapping
Contributors are Welcome

https://github.com/lmichel/vodml-lite-mapping

Mapping Nodos vs Java Classes

Mapping Node Java Class

<INSTANCE> Instance Set of key/value pairs
Key are the dmrole of the values

<VALUE> Textual or Numerical Atomic value

<COMPOSITION> MultiInstanceCollection A collection of instances

<SET> GroupByCollection Set of “grouped by” instances

<ARRAY> DataTableCollection Iterator on <DATATABLE>

All of these classes inherit from the MappingElement abstract class

VODml serialization

The structure of VODML instance has nothing more than
complex JSON messages

It can be modeled as a tree of Tuple/Collection/Value

As we are not constrained by the JSON formalism
(STring) we can had some metadata at each node

Test Results

Test Case Status Comment

Simple model without <DATATABLE> OK

Simple model with <DATATABLE> OK Use of <ARRAY>

Simple model with <DATATABLE> and
<GLOBALS>

OK Use of ID/ref

Complex model: TS data model, a mix of
STC, DatasetMetadata, PhotDM + time
domain classes but one single light curve

OK Model provided by Mark C.D.
VOTable provided by ESAC

Complex model: TS data model, a mix of
STC, DatasetMetadata, PhotDM + time
domain classes but 3 light curves

OK Use of
<ARRAY>
 <INSTANCE>
 <FILTER>

Set of Time Series, one light curve each and
grouped by bands

Work in progress Use of <SET groupby=”band”>

Test achieved on hand-annotated VOTable and validated with my Java API

My Proposal

● JSON: my leitmotiv
○ Incredibly complex data are exchange with JSON messages
○ JSON messages rely on 3 concepts

■ Values
■ Tuple
■ Collection

○ We must be able map our data with these 3 concepts
■ Could lose some ORM features
■ Will gain lot of expressivity

○ I do not propose to use JSON for the mapping
○ I propose to apply the JSON philosophy to our XML syntax

● dmrole=root, my other leitmotiv
○ Tagging the root object of the mapping with dmrole=root allows to clearly

show what is the content of the VOTable

What I’m Experimenting with TD Data

● Keeping the proposed workflow
○ Reference to VODML models
○ VODML/MODELS/GLOBALS/TEMPLATES pattern
○ Mapping block below <VOTABLE>
○ A syntax reflecting the model structure

● Helping Clients to see what the VOTable Content Is

● Supporting sa Much Existing Data Files as Possible
○ Include directives for the parser such as aggregation operators

● Syntax More Human Readable, then More Reliable

The Mapping Cat

My Guidelines

● Syntax Simplification
○ Just writing what the client really needs
○ Making it more human readable, then more reliable

● Client Oriented
○ Helping clients to identify what the actual content of the votable
○ Making easier the design of generic API (my talk in apps)

● Versatility
○ Supporting as much existing data files as possible
○ Making easier a possible templating

