
New Python Developments to Access CDS
Services
astroquery.cds package & MOCPy improvements

Matthieu Baumann & Thomas Boch
Centre de Données Astronomiques de Strasbourg
matthieu.baumann@astro.unistra.fr

Abstract

We will present recent developments made in the frame of the ASTERICS project and aimed at
providing Python interface to CDS services and Virtual Observatory standards. Special care has been
taken to integrate these developments into the existing astropy/astroquery environment.
A new astroquery.cds module allows one to retrieve image or catalogue datasets available in a given
region of the sky described by a MOC (Multi Order Coverage map) object. Datasets can also be
filtered through additional constraints on their metadata.
The MOCPy library has been upgraded: performance has been greatly improved, unit tests and
continuous integration have been added, and the integration of the core code into the astropy.regions
module is under way. We have also added an experimental support for creation and manipulation of
T-MOCs which describe the temporal coverage of a data collection.

I MOCPy [4]: a Library Handling the Creation and

Manipulation of MOCs

New features and improvements have been added to the library:

• MOCPy [4] has been optimized and tends to use numpy’s broadcasting feature as much as possible.
Creating a MOC from a list of astropy.coordinates.SkyCoord is a lot faster thanks to the
vectorization involved when operations are directly done on numpy arrays.
The following code shows the implementation of from lonlat responsible for creating a MOC from lon
and lat astropy quantities at a given order.

In [1]: from astropy_healpix import HEALPix

lon and lat are astropy quantities

hp = HEALPix(nside=(1 << order), order='nested')
ipix = hp.lonlat_to_healpix(lon, lat)

shift = 2 * (29 - order)

intervals = np.vstack((ipix << shift, (ipix + 1) << shift)).T

This code:

– Uses astropy-healpix to get the HEALPix cells where the (lon, lat) coordinates are located.

– Build a N × 2 numpy array storing the intervals of the HEALPix cells at a given order.

No Python loops over the quantities are involved here as it is encouraged to perform operations directly
on numpy arrays.

• Dependencies to healpy have been removed. We now use astropy-healpix and therefore have changed
the licence of MOCPy [4] from GPL to BSD-3.

• A new serialize method has been added, taking an optional format argument that can be set to fits
or json.

• New methods fill and perimeter have been implemented. These methods are responsible for
plotting the MOC (resp. its perimeter) on a matplotlib.axe.Axes using a projection defined by
an astropy.wcs.WCS object.

• A new TMOC class handles the creation and manipulation of temporal MOCs. A from times method
creates a T-MOC object from an astropy.time.Time object. As for the spatial MOCs, it is possible
to serialize a T-MOC, compute the intersection, union, difference between several T-MOCs as well
as use them to filter an astropy.time.Time object.

First observation: 1978-05-10 20:09:28.672

Last observation: 2004-04-22 16:56:36.350

Total duration: 227.424 jd

Max order: 14

II astroquery.cds [1]: a New Module for Retrieving Data

Collections Based on Region and/or Meta-data Queries

astroquery.cds [1] has been merged into the master branch of astroquery in July the 23th and will be
available for its next release (v0.3.9). This module requests the CDS MOCServer, a server storing MOCs and
meta-data of ' 20000 data collections. This package offers two methods (see the module’s documentation
[1] for more details):

• query region retrieves the collections having their observations in a specific region. Regions can be
expressed as regions.CircleSkyRegion/PolygonSkyRegion or mocpy.MOC objects.

• find datasets retrieves the collections based on a constraint on their meta-data.

These two methods return by default an astropy.table.Table containing the meta-data of one
collection per row. An optional argument return moc=True can be used to directly retrieve the MOC (a
mocpy.MOC object) of the matching collections.

Below is an example of an astropy.table.Table returned by query region and filtered to select
only the vizier tables having between 75000 and 100000 sources. The meta-data shown here are obs id,
obs title, dataproduct type and cs service url. For a list of all the possible meta-data returned
by the cds module, please refer to the page 18 of the HiPS IVOA paper [3].

III State of the Art of the CDS Python Tools

The following image results from a notebook script combining different Python packages, most of them
being developed by the CDS team through the past years. It is available on the cds-astro [2] github
repository as an example for astronomers. This script:

1. Retrieves two MOCs from the MOCServer (astroquery.cds [1]).

2. Computes their intersection (MOCPy [4]) and shows the resulting MOC on an aladin-lite view
(ipyaladin).

3. Searches for a vizier table in optical regime having some observations in this region (astroquery.cds [1]).

4. Retrieves the table using astroquery.vizier.

5. Filters the table to only keep the observations lying in the MOC (MOCPy [4]) and adds the filtered
table to the aladin view (ipyaladin).

IV Future Improvements

• MOCPy [4] is currently being integrated into astropy/regions. New classes, MOCSkyRegion and
MOCPixelRegion will be implemented. MOCSkyRegion is the equivalent of the mocpy.MOC class,
therefore it will contain all its features (serialization, intersection, ...). A MOCPixelRegion is a MOC
sky region projeted on an astropy WCS object.

• astroquery.cds.query region will be upgraded to accept MOCSkyRegion objects.

• The query region methods of both astroquery.simbad and astroquery.vizier should accept
MOCSkyRegion too so that Simbad and Vizier tables can be filtered by MOCs.

References

[1] Matthieu Baumann. astroquery.cds documentation page.

https://astroquery.readthedocs.io/en/latest/cds/cds.html, 2018.

[2] Matthieu Baumann. Notebook example illustrating the state of the art of the CDS Python tools.
https://github.com/cds-astro/ADASS-IVOA18, 2018.

[3] Pierre Fernique, Mark Allen, Thomas Boch, Tom Donaldson, Daniel Durand, Ken Ebisawa, Laurent
Michel, Jesus Salgado, and Felix Stoehr. Hips–hierarchical progressive survey version 1.0. 2017.

[4] Thomas Boch Matthieu Baumann. Python library to easily create and manipulate MOCs (Multi-Order
Coverage maps) . https://github.com/cds-astro/mocpy, 2015-.

https://github.com/cds-astro/ADASS-IVOA18
https://astroquery.readthedocs.io/en/latest/cds/cds.html
https://github.com/cds-astro/ADASS-IVOA18
https://github.com/cds-astro/mocpy

	MOCPy MOCPy: a Library Handling the Creation and Manipulation of MOCs
	astroquery.cds cds: a New Module for Retrieving Data Collections Based on Region and/or Meta-data Queries
	State of the Art of the CDS Python Tools
	Future Improvements

