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ABSTRACT

With the development of 3D sensing technologies, point

clouds have attracted increasing attention in a variety of ap-

plications for 3D object representation, such as autonomous

driving, 3D immersive tele-presence and heritage reconstruc-

tion. However, it is challenging to process large-scale point

clouds in terms of both computation time and storage due to

the tremendous amounts of data. Hence, we propose a point

cloud simplification algorithm, aiming to strike a balance be-

tween preserving sharp features and keeping uniform density

during resampling. In particular, leveraging on graph spectral

processing, we represent irregular point clouds naturally on

graphs, and propose concise formulations of feature preserva-

tion and density uniformity based on graph filters. The prob-

lem of point cloud simplification is finally formulated as a

trade-off between the two factors and efficiently solved by our

proposed algorithm. Experimental results demonstrate the su-

periority of our method, as well as its efficient application in

point cloud registration.

Index Terms— Point cloud simplification, graph signal

processing, feature preserving, uniformity-controllable

1. INTRODUCTION

The development of 3D sensing technologies enables the con-

venient acquisition of large-scale point clouds. A point cloud

is a natural representation of arbitrarily-shaped objects, which

consists of a set of points on irregular domain. Each point

has 3D coordinates and possibly other attributes such as color

and normal. Point clouds have been widely applied in vari-

ous fields, such as 3D immersive tele-presence, navigation for

autonomous driving, and heritage reconstruction [1]. Never-

theless, it is challenging to process large-scale point clouds in

terms of both computation time and storage due to the tremen-

dous amounts of data. Hence, point cloud simplification (or

resampling, downsampling) is required.

Existing point cloud simplification algorithms can be

mainly classified into two types: mesh-based simplification

and point-based simplification. Earlier algorithms are based

on mesh reconstructed from the point cloud, which contains

not only points but also surfaces [2]. However, the process of

mesh reconstruction is quite time-consuming for large-scale

(a) Original point cloud (b) Simplified point cloud

Fig. 1. The proposed point cloud simplification method en-

hances contours of the point cloud while retaining the den-

sity uniformity. (a) shows the original point cloud of Shutter,

which consists of 291,220 points. (b) shows the simplified

point cloud with 5% of points reserved.

point clouds, and thus point-based simplification is proposed.

Point-based simplification makes use of the information of

the raw points to determine whether a point is to be preserved

or abandoned, and sometimes new points are generated. Note

that, both types of algorithms are heuristic without optimiza-

tion, and often lead to artifacts such as edge deficiencies.

Chen et al. [3] optimize the resampling distribution by

minimizing the proposed reconstruction error based on a

feature-extraction operator. The contours in the point clouds

are well preserved after resampling, but the points are ex-

tremely nonuniform. A point cloud is regarded uniform if

the local density of points is similar in different regions. In

practice, the uniformity property of point clouds is often de-

sired to facilitate applications such as rendering, denoising,

inpainting, etc. Therefore, a good balance between feature

preserving and uniformity is in need.

Hence, we propose an optimized point cloud simplifica-

tion approach, which is optimal in terms of striking a balance

between the preservation of sharp features and the uniformity

of the point cloud, as demonstrated in Fig. 1. We cast this goal

as an optimization problem, with a user-adjustable parameter

to control the degree of uniformity for various applications.
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In particular, we represent point clouds naturally on graphs,

with each point as a vertex in the graph and the relationship

among points described by edges. Based on the representa-

tion, we propose concise formulation of the loss in feature via

high-pass graph filters and the loss in density uniformity via

the number of graph connectivities of each vertex, leveraging

on the field of graph signal processing [4]. Further, we pro-

pose constraint relaxation and an efficient algorithm to solve

the formulated optimization problem.

In summary, our contributions include:

• We propose optimized point cloud simplification, aim-

ing to strike a balance between feature preservation and

density uniformity.

• We formulate the loss in feature preservation and den-

sity uniformity concisely, leveraging on graph signal

processing.

• Experimental results validate the superiority of our

method, as well as the effectiveness as a preprocessing

step for the application of point cloud registration.

The paper is organized as follows. We first review previ-

ous point-based simplification algorithms in Sec. 2 and basic

concepts of graph signal processing in Sec. 3. Then we state

the problem and formulate it as an optimization problem in

Sec. 4. An efficient algorithm to solve the optimization prob-

lem is proposed in Sec. 5. Finally, experimental results and

conclusions are discussed in Sec. 6 and Sec. 7, respectively.

2. RELATED WORK

We briefly review existing point-based simplification al-

gorithms, including clustering-based, iteration-based and

formulation-based simplification.

Clustering-based simplification The idea is to divide

the point cloud into clusters and then replace the points in

each cluster by one or several points. Yu et al. [5] cluster

the points by hierarchical clustering followed by a local clus-

tering to minimize the sample error. Shi et al. [6] use the

K-means clustering method, detect the boundary clusters and

subdivide the cluster with high curvature. As clustering large

amounts of points is time-consuming, Benhabiles et al. [7]

propose coarse-to-fine approach and create a coarse cloud us-

ing volumetric clustering approach to speed up the algorithm.

In general, clustering-based simplification is amenable to im-

plementation, but usually causes artifacts such as edge defi-

ciencies.

Iteration-based simplification Moenning et al. [8] in-

troduce the farthest point resampling method, selecting the

points iteratively according to the Voronoi diagrams. Song

et al. [9] take advantage of the normals and distances of the

neighbors of one point to define the importance of the point.

Then they remove the point with the least significance and up-

date the significance of the remaining points iteratively. Lee

et al. [10] also use normals to define the importance of each

point, but they merge two points with the least significance

instead in each step. Yang et al. [11] define the mean curva-

ture of points by Principal Component Analysis and Fourier

Transform, and iteratively remove the points around the point

with the largest curvature in the remaining ones.

Iterative-based simplification often obtains better perfor-

mance than clustering-based methods, but it is less efficient

in the process of updating and finding points with the largest

(or least) significance after each step.

Formulation-based simplification Both clustering-

based and iterative-based simplification have no proof of op-

timality. In order to be more mathematically rigorous, Leal et

al. [12] cluster the points and then identify points with high

curvature which will be preserved. For the remaining points,

they use the linear programming model to select a reduced set

with density equivalent to the original data set. Chen et al. [3]

define a resampling distribution and simplify the point cloud

according to the distribution. The optimized distribution is ac-

quired by minimizing the proposed reconstruction error based

on the proposed feature-extraction operator. While the con-

tours are thus well preserved, the resulting point cloud is ex-

tremely nonuniform, which might be a hurdle to some appli-

cations such as rendering, denoising, etc. This motivates us

to propose a simplification method that minimizes the loss in

both feature preservation and density uniformity.

3. BACKGROUND

We address point cloud simplification leveraging on graph

signal processing. The basic concepts of spectral graph the-

ory [13] are reviewed here, including graph, graph Laplacian

and graph signal.

We consider an undirected graph G = {V , E ,W} com-

posed of a vertex set V of cardinality |V| = N , an edge set E
connecting vertices, and a weighted adjacency matrix W. W

is a real symmetric N ×N matrix, where Wi,j is the weight

assigned to the edge (i, j) connecting vertices i and j. We as-

sume non-negative weights, i.e. Wi,j ≥ 0. For instance, the

graph adopted in our work is a k-nearest-neighbor (k-NN)

graph, where each vertex is connected to its k nearest neigh-

bors.

The graph Laplacian matrix, defined from the adjacency

matrix, can be used to uncover many useful properties of a

graph. Among different variants of Laplacian matrices, the

combinatorial graph Laplacian used in [14, 15, 16] is defined

as L = D−W, where D is the degree matrix–a diagonal ma-

trix where Di,i =
∑N

j=1
Wi,j . Further, the graph Laplacian

can be normalized as L = D
−1L = I−D

−1
W.

Graph signal refers to data residing on the vertices of a

graph, such as social, transportation, sensor, and neuronal net-

works. In our context, we construct a k-NN graph on the

point cloud, where the coordinate of each point can be treated



as the graph signal defined on the k-NN graph. This will be

discussed further in Sec. 4.

4. PROBLEM FORMULATION

We describe point cloud simplification as a process of resam-

pling the point cloud: given a point cloud X with |X| = N ,

find a point cloud X
′ ⊂ X with |X′| =M < N . The simpli-

fication rate is defined as α = M
N

.

A point cloud X with N points, each of which is com-

posed of K attributes, is represented as X ∈ R
N×K , where

the i-th row denoted as xT

i represents the i-th point. Attributes

can be coordinates, normals, colors, etc., where coordinates

are compulsory, i.e., K ≥ 3. In order to represent the simpli-

fied point cloud, we introduce a resampling diagonal matrix

denoted as Ψ ∈ RN×N with Ψi,i = 1 if xi is kept in the

simplified point cloud and Ψi,i = 0 otherwise. Thus, the sim-

plified point cloud is represented as ΨX.

Our goal is to find the optimal resampling matrix Ψ so

as to keep most geometry features (e.g., contours of the point

cloud) while controlling its uniformity. This is essentially a

trade-off between the uniformity of points in the simplified

point cloud and the preservation of sharp features. Hence,

we first formulate the loss in feature and the loss in uniformity

due to simplification respectively. Then we cast the problem

of finding the optimal resampling matrix as an optimization

problem, which minimizes the total loss.

4.1. Loss in Feature

Inspired by [3], we leverage the normalized graph Laplacian

L—a high-pass filter—to extract sharp features of the graph

signal. We firstly construct a k-NN graph on the point cloud.

The attribute of the point cloud is then regarded as the graph

signal. For simplicity, we assume the attribute consists of

merely coordinates. We then define the edge weight Wi,j

between vertices i and j as an exponential function of the

Euclidean distance between i and j:

Wi,j =




exp

(
−
‖xi − xj‖22

σ2

)
, j ∈ Ni

0, otherwise

(1)

where σ is a parameter, and Ni denotes the set of neighbors

of vertex i.

We denote the normalized edge weight between xi and

xj as W̃i,j =
Wi,j∑

j

Wi,j
, where W̃ = D

−1
W is the normal-

ized weight matrix. Then the i-th row of the matrix LX, X̃i,

follows as

(LX)(i) = X̃i = xi −
∑

j

W̃i,jxj . (2)

As defined in Eq. 1, the edge weight encodes the similar-

ity between two points. Hence, X̃i encodes the variation of

one point from its neighbors. This is because
∑
j

W̃i,jxj is a

weighted representation of xi’s neighbors, which would differ

from xi greatly if xi is distinct from its neighbors, resulting

in large ‖X̃i‖2. As we know, points that are distinct from its

neighbors tend to exhibit sharp features, such as points on a

contour. Accordingly, a large ‖X̃i‖2 is likely to correspond

to sharp features.

Hence, we represent sharp features of the point cloud X

as LX, and the remaining features after resampling as ΨLX

for simplicity. The loss in feature due to simplification is thus

defined as

lf (Ψ) = ‖ΨLX− LX‖22. (3)

4.2. Loss in Density Uniformity

While deploying the normalized Laplacian is able to preserve

sharp features well, as in [3], points on surfaces with indistinct

features will almost be all neglected, leading to extreme den-

sity non-uniformity of the point cloud, i.e., with almost only

contours remaining after simplification. In order to avoid this

extreme non-uniformity, we further define loss in the density

uniformity for regularization, leveraging the degree of each

vertex.

As in Sec. 4.1, we construct a k-NN graph. If the density

of the original point cloud is uniform, the k nearest neighbors

lie in a ball centering at each point with the same radius. We

use a binary matrix A to represent the adjacency of the graph,

i.e. Ai,j = 1 if and only if xj is one neighbor of xi. Each

row of A indicates the neighbors of a point, and sums up to k.

By means of the definition of Ψ, we represent the adjacency

matrix of the simplified point cloud graph as AΨ. Given the

simplification rate α, the number of each point’s neighbors in

the graph constructed over the simplified point cloud is ap-

proximately equal to αk if simplified uniformly. Hence, we

define the uniformity loss as

le(Ψ) = ‖AΨ1− αk1‖22, (4)

where 1 ∈ R
N represents a column vector with every element

equal to 1. Thus AΨ1 computes the number of neighbors of

each point in the simplified point cloud.

4.3. Final Objective

Having defined the loss in feature and uniformity, we formu-

late point cloud simplification as an optimization problem, in

which the objective function aims to strike a balance between

the feature loss and the uniformity loss:

l(Ψ) = lf (Ψ) + λle(Ψ), (5)

where λ is a hyper-parameter to keep a balance of the fea-

ture and uniformity. Further, we add some constraints for the



optimization variable Ψ to make it valid. The problem for-

mulation is

min
Ψ

‖ΨLX− LX‖2
2
+ λ‖AΨ1− αk1‖2

2
,

s.t. Ψi,i ∈ {0, 1}, i = 1, 2, ..., N ;

Ψi,j = 0, i 6= j;

tr(Ψ) = αN.

(6)

In order to facilitate solving the optimization problem, we

define a resampling vectorψ ∈ RN . ψ is actually the diagonal

elements of the resampling matrix Ψ, i.e. ψi = Ψi,i, i =
1, 2, ..., N . We then replace Ψ with ψ in the optimization

objective of (6).

Further, we define the feature matrix (LX)(LX)T as F
for simplicity, and define a diagonal matrix F ∈ RN×N and

a vector f ∈ RN with fi = Fi,i = Fi,i, i = 1, 2, ..., N . Then

the aforementioned problem formulation is equivalent to

min
ψ

ψT
Fψ − 2fTψ + λ

[
ψT

A
T
Aψ − 2αk(A1)Tψ

]

s.t. ψi ∈ {0, 1}, i = 1, 2, ..., N ;

ψT
1 = αN.

(7)

5. THE PROPOSED ALGORITHM

The optimization problem in (7) is a combinatorial optimiza-

tion problem, which is NP-hard. In order to solve the algo-

rithm efficiently, we relax the first constraint to 0 ≤ ψi ≤ 1.

Then the optimization problem is simplified to

min
ψ

ψT(F+ λAT
A)ψ − 2(f + λαkA1)Tψ

s.t. 0 ≤ ψi ≤ 1, i = 1, 2, ..., N ;

ψT
1 = αN.

(8)

The relaxed optimization problem has a quadratic objec-

tive and linear constraints, which can be efficiently solved

with existing optimization algorithms, such as the interior-

point method [17, 18]. Having acquired the solution ψ in

[0, 1], we regard each element of ψ as the confidence of the

point to be selected. Points with top-α confidence are pre-

served while the rest are discarded for simplification.

In order to speed up the algorithm, instead of constructing

a graph over the entire point cloud and optimize the objec-

tive, we divide the point cloud into cubes and process each

cube separately. The size of a cube, i.e., the number of points

in the cube, decides the efficiency of the algorithm. While

smaller size leads to faster implementation, larger size con-

trols global information better. In our experiments, we empir-

ically constrain the size to the range [3000, 8000].

Further, artificial contours may occur along the boundary

between two cubes due to the separate processing. In order to

avoid this, for each cube C, we construct a graph over a larger

cube that encompasses C, and compute the corresponding F

therein. The larger cube is able to contain all the k nearest

neighbors of the points in C, breaking the bound ofC and thus

avoiding artificial contours. Then we resample F to acquire

that of the points in C.

Note that we simultaneously resample A when we resam-

ple F. Then the degree of each point on the artificial block

boundary will be less than k, i.e., the degree within the block

of each point xi on the block boundary di < k, which con-

tradicts our assumption. In order to address this issue, we

complement k − di for each point by adding it to the diag-

onal element of the binary adjacency matrix, i.e., Ai,i, thus

avoiding blocking artifacts.

6. EXPERIMENTAL RESULTS

6.1. Experimental Setup

In order to evaluate the proposed method, we compare with

three competitive approaches: the mean-curve based feature-

preserving simplification in [11], the graph-based contour-

extracted resampling in [3], and the uniform sampling method

using the voxel-grid in PCL [19]. We test on several point

clouds, including Daratech, Anchor, Armadillo, Shutter [20],

and Hand 1.

6.2. Experimental Results

Visualization We deploy the proposed simplification method

to efficiently visualize large-scale point clouds. Two repre-

sentative results are presented in Fig. 2 and Fig. 3. The for-

mer is demonstrated in the format of point clouds, while the

latter is converted to meshes for applications such as com-

puter graphics where meshes are preferable due to the avail-

able topology. We observe that uniform-sampling [19] leads

to results with defects along corners, as demonstrated in red

boxes in Fig. 2 & 3, because the method neglects sharp fea-

tures of the point cloud. The feature-aware methods [3, 11]

preserve sharp features well but fail to keep the uniformity of

the point cloud, as pointed with red arrows in Fig. 2 & 3. In

contrast, the proposed method not only preserves points with

sharp feature (e.g. points on the contours), but also keeps the

uniformity to some extent for better visualization and mesh

conversion.

Next we evaluate the power of the parameter λ in con-

trolling the uniformity of the point cloud in Fig. 4. As men-

tioned, λ is the weight of the loss in uniformity in (8). A

smaller λ leads to less constraint on the uniformity and thus

preserves more sharp features. The adjustable parameter λ

enables users to conveniently control the uniformity of the

simplified point cloud.

Application to Registration We apply our simplification

method to accurate registration of large point clouds. We in-

tentionally shift and rotate the original point cloud to obtain

1https://www.cc.gatech.edu/projects/large_models/

https://www.cc.gatech.edu/projects/large_models/


(a) Original (b) Uniform (c) Mean Curve (d) Contour (e) Proposed

Fig. 2. Simplification results for Daratech with simplification rate 10%. (b) loses much information such as edges. (c)

preserves points around edges but is nonuniform (it looks uniform due to the fact that edges in Daratech is close to each other.

(d) preserves the contour effectively but keeps nearly no points on the smooth surfaces. (e) plays a good trade-off between the

contour and uniformity. Please zoom in for more details.

(a) Original (b) Uniform (c) Mean Curve (d) Contour (e) Proposed

Fig. 3. Conversion of simplification results to meshes for Anchor with simplification rate 10%. (b) fails to restore edges

accurately due to neglecting the contour information. (c) preserves the points around edges but neglects points on the surface,

leading to a big hole as pointed out by the red arrow. (d) leads to triangles of extremely uneven size in the converted mesh. (e)

exhibits a good trade-off. Please zoom in for more details.

(a) λ = 10
−1 (b) λ = 10

−3 (c) λ = 10
−5

Fig. 4. Simplification results for Anchor with different settings of λ using the proposed method. Please zoom in for more

details.

(a) Transformed (b) Original (c) Uniform (d) Proposed

Fig. 5. Registration results for Armadillo. (a) shows the point clouds before registration. (b)(c)(d) are registration results from

different simplification methods. (d) enhances the contour information while maintaining the uniform density, thus leading to

the best registration result. Please zoom in for more details.



the transformed point cloud. The universal ICP algorithm

[21] is employed to register the simplified original and trans-

formed point clouds. As presented in the visualization exper-

iments, feature-aware methods [3, 11] preserve sharp features

well but lead to extremely nonuniform point clouds, which

is often unsuitable for the subsequent processing such as the

aforementioned mesh conversion. Thus these two methods

are not applied in registration. We compare with the original-

sized and uniformly resampled point clouds, which are two

most common strategies used in point cloud registration.

We adopt the root mean square error RMSE as the

evaluation metric for registration. Specially, RMSE =√
1

N

∑N

i=1
‖x̂i − xi‖22, where x̂i ∈ R

3 is the coordinate of

the i-th point for the simplified point cloud, while xi is that

of the ground truth.

The quantitative results are listed in Tab. 1 and one of the

visual results is shown in Fig. 5. We set the simplification rate

as 10% for Anchor and Armadillo (55,799 and 99,416 points

respectively), and 5% for large Shutter and Hand (291,220

and 327,323 points respectively). We see that the proposed

method outperforms the other methods, which is consistent

with the visual results in Fig. 5 and validates the effectiveness

of our method.

Table 1. Quantitative Results of Registration in RMSE

Method Anchor Armadillo Shutter Hand

Original 0.8325 0.0155 0.0248 0.1575

Uniform 0.9348 0.0155 0.0248 0.1588

Proposed 0.5008 0.0124 0.0205 0.1508

7. CONCLUSION

Leveraging on graph signal processing, we propose an effi-

cient point cloud simplification method, which strikes a bal-

ance between preserving sharp features and keeping uniform

density. A concise formulation is presented based on graph

filters, which offers an adjustable parameter to control the

uniform density conveniently according to the applications.

Experimental results demonstrate the effectiveness of the pro-

posed method and its application to point cloud registration.
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