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A large proportion of today’s digital datasets have a spatial component. The effective storage and

management of which poses particular challenges, especially with light detection and ranging (LiDAR),

where datasets of even small geographic areas may contain several hundred million points. While in the

last decade 2.5-dimensional data were prevalent, true 3-dimensional data are increasingly commonplace

via LiDAR. They have gained particular popularity for urban applications including generation of city-scale

maps, baseline data disaster management, and utility planning. Additionally, LiDAR is commonly used for

flood plane identification, coastal-erosion tracking, and forest biomass mapping. Despite growing data

availability, current spatial information systems do not provide suitable full support for the data’s true 3D

nature. Consequently, one system is needed to store the data and another for its processing, thereby

necessitating format transformations. The work presented herein aims at a more cost-effective way for

managing 3D LiDAR data that allows for storage and manipulation within a single system by enabling a

new index within existing spatial database management technology. Implementation of an octree index

for 3D LiDAR data atop Oracle Spatial 11g is presented, along with an evaluation showing up to an eight-

fold improvement compared to the native Oracle R-tree index.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent developments in LiDAR technology have produced
accurate, detailed and truly three-dimensional (3D) datasets. Conse-
quently, LiDAR data have been widely used in critical urban applica-
tions, including large-scale city map generation and change detection
in urban environments. While LiDAR datasets provide high accuracy
and resolution, they also pose significant size-based challenges. As
an example, typical low-density aerial scanning generates 30–50
points/m2 (a 2001 flood plane mapping generated approximately
5.6 billion points for the entire state of North Carolina) (Laefer and
Pradhan, 2006), with as much as 225 points/m2 resulting in 225
million points for one square kilometer (Hinks et al., 2009).

Current spatial information systems do not provide suitable
support for 3D data manipulation and evaluation. So while a specific
system can store the data, another must process it, which requires
format transformations with consequent potential accuracy losses.
The work herein aims at providing a more efficient and cost-effective
way that allows storage and manipulation of 3D LiDAR datasets
within a single system. The proposed solution exploits current spatial
database management system (SDBMS) technology and its extensi-
bility capabilities that allow additional functionality development.
While extensive support for 2D data is available from several
ll rights reserved.

: þ353 1 716 3297.

er@ucd.ie (D.F. Laefer).
database management system (DBMS) vendors including Postgres
and Oracle, very limited support is provided for 3D data handling.
To achieve efficiency, suitable 3D indexing mechanisms are essential
(Hongchao and Wang, 2011). Presently, Oracle is currently the only
SDBMS that provides native 3D spatial data types and 3D index
implementation, but it is based on an R-tree and possesses inherent
inefficiencies when applied to LiDAR data, as will be demonstrated.
This paper shows how octree-based indexing can greatly facilitate the
storage and indexing of 3D pointcloud data within an SDBMS.
Presented herein is an implementation of an octree index atop Oracle
Spatial 11g and benchmarking demonstrating its outperformance of
the native R-tree index commercially provided.
2. Background and technologies

This section outlines various technologies and approaches
currently used to store and index 3D pointcloud data. First,
support of SDBMSs is investigated, followed by an overview of
indexing approaches for 3D pointdata. Subsequently, octree
indexing implementation is explained.

2.1. SDBMS support for 3D pointcloud data

Many of high-resolution LiDAR’s benefits remain relatively
unexploited, as the data cannot be efficiently managed in a traditional
Geographical Information System (GIS), because of an inability of GISs
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to fully support 3D objects (Zlatanova et al., 2004). For example, GIS
systems are not designed to support finite element meshes, which are
often the intended end products for a LiDAR scan (Laefer et al., 2011).
A desirable alternative would overcome the need for multiple
programs with their required import and export transactions (to
eliminate the potential loss of accuracy through format conversions)
and would not be file-based (due to the datasets’ very large sizes).
The solution proposed herein integrates all required functionality
within a single SDBMS.

A DBMS controls the organization, storage, management, and
retrieval of all data within a database and ensures that data incon-
sistencies and data redundancies are significantly reduced compared
to a file-based, storage system. A DBMS also facilitates data integrity,
as well as multi-user control on shared data. Initially, traditional
DBMSs did not support storage and querying of spatial data (i.e., data
with a spatial component). Later, an integrated approach was devel-
oped to store the spatial extent (together with the attribute data)
directly into the database (in the same table). Current SDBMSs, such
as Oracle Spatial or PostGIS are based on the extensibility (i.e., the
ability to add new types and operations) of relational database
management systems. This allows for all the data management
within the same engine. Additionally, retrieval and manipulation
are facilitated through structured query language (SQL).

For a spatial system to be fully 3D, it must support 3D data types
including volumes in 3D Euclidean space. Such data types are based
on a 3D geometric data model (i.e., vector and/or raster data with
underlying geometry and topology). A 3D spatial system must also
offer operations and functions embedded into its query language
operable with its 3D data types (Breunig and Zlatanova, 2011). Until
recently, SDBMSs have not provided support for 3D data manage-
ment, as extensively reviewed by Schön et al. (2009a). However,
with Oracle Spatial’s release of 11g, 3D pointclouds can be stored
with a built-in data type. Previously, Oracle Spatial relied heavily on
SDO_GEOMETRY. More recently Oracle Spatial has moved to
SDO_PC as the main data type employed for the storage of multi-
dimensional pointcloud data. With that, a set of points are grouped
and stored as the BLOB object in a row. Although there is no upper
bound on the number of points in an SDO_PC object, the current
version offers only nine placeholders for information storage along-
side locational attributes. The main drawback is the inability to
update SDO_PC objects. Consequently, the SDO_GEOMETRY data
type still offers the greatest flexibility for 3D data points and was,
thus, used in the proposed implementation. For 3D pointclouds, it is
desirable to store locational information together with attribute
information (e.g., colour, intensity) in the same table, as semantic
information often times directs feature recognition processes. This
would typically occur later in the workflow. One example for this is
a spatial query that operates within a particular colour characteristic
region, such as for example a row of buildings that are uniquely
discernible by color. Being able to avail of this simple information
should result in significant query performance improvements.
Indexes are employed to avoid traversing a complete table when
performing spatial queries. Thus, indexes are used to organize the
space and the objects within that space. Given the large size of
LiDAR datasets, efficient indexing mechanisms are essential
(Breunig and Zlatanova, 2011), as discussed in Section 2.2.

2.2. Indexing of 3D pointcloud data

Stanzione and Johnson (2007) argue that a tree structure is
inherently efficient for indexing due to its binding with the internal
data storage structure. Thus, various tree structures have been
explored for indexing pointcloud data. Spatial indexing techniques
evolved in the mid-1980s, with Guttman’s R-tree (Guttman, 1984)
being one of the most popular and enduring. Combining an R-tree
with an importance value (Van Oosterom, 1990), which is called
V-reactive tree (Li et al., 2001) is one approach to indexing LiDAR
data. The V-reactive tree is an R-tree structure in 4D, optimized for
3D visualization. However, to date, this has not been tested for
realistically large pointcloud datasets. Hua et al. (2008) proposed a
hybrid approach for visualization by combining an octree with a k–d

tree (Bentley, 1975) by building a local k–d tree at each octree level
node but only evaluated visualization speed for 3D pointclouds for
up to 100,000 points (Hua et al., 2008). In an alternative approach,
De Floriani and Facinoli (2010) extended two-dimensional (2D)
quadtree indexes to work with TIN structures and argued that their
mechanism could be generalized to support Tetrahedral Irregular
Networks (TENs) on an octree basis to support true 3D functionality.

Hierarchical space-division based structures (e.g., octrees) are
critical for 3D surface representations and queries, as they are volume
based. Combined approaches, such as the volume–surface tree (V–S

tree) aim to avoid a strong imbalance with regards to clustering of
points by applying a 3D octree globally and a 2D quadtree locally
(Boubekeur et al., 2006). However, this method tends to collapse for
non-smooth surfaces, which then requires pure octree indexing.
Another interesting LiDAR indexing approach is based on the Hilbert
space-filling curve (Wang and Shan, 2005). Space-filling curves
preserve spatial proximity at a local level and map points in an n-
dimensional space into a linear order (Sagan, 1994). This approach
was implemented in MySQL and the Microsoft Access Database for
evaluation purposes and tested by Wang and Shan (2005) on
1.4 million LiDAR points from a terrestrial scan of a bridge. Notably,
Microsoft Access currently does not provide any spatial support,
while MySQL Spatial offers only rudimentary spatial support by
providing spatial data types, functions, and a spatial index. Due to
the limited functions in MySQL Spatial, this database is best used for
simple retrieval by bounding box operations.

Presently, Oracle Spatial provides an R-tree based spatial index
and a deprecated 2D quadtree based on minimum bounding
rectangles (MBRs), and the 3D extension consists of minimum
bounding boxes (MBBs). Implementing a bounding box on a dense
pointcloud is, however, non-trivial and may introduce inefficien-
cies due to overlapping of sibling nodes and uneven node sizes
(Zhu et al., 2007). An alternative is to map spatial objects onto a
one-dimensional space to enable use of a standard index, such as
a B-tree (Bayer, 1971). Another option is PostgreSQL, which
supports the Generalized Search Tree (GiST) index (www.geospa
tial.org/), a template data structure for abstract data types that
offers more robust support for spatial indexing.

Several strategies have been developed for indexing of multi-
dimensional data, although there is limited vendor support for
these, and true 3D index creation is still an ongoing research
problem (Schön et al., 2009b). In most cases, indexes only support
two-dimensionality with simple 3D extensions (Arens et al., 2005).
An octree offers an alternative, but currently no commercially-
available SDBMSs support octree indexing, and to the best of the
authors’ knowledge, no meaningful benchmarks have been provided
thus far on this approach. This paper rectifies these deficiencies.

2.3. Octree indexing for spatial 3D pointcloud data

An octree structure offers distinct advantages over the frequently
implemented R-tree for indexing LiDAR datasets. First, octrees can
index point geometries directly, as opposed to the R-trees that solely
rely on bounding boxes. Furthermore, octrees generate disjointed,
non-overlapping tree nodes, whereas R-tree bounding boxes are often
overlapping, which reduces query efficiency. Moreover, storing the
logical tree structure into a SDBMS is complex. The tree structure can
be stored in a table where each node of the tree structure corresponds
to a row in the table. In that case, one column is needed to store node
identifiers (nodeID) and another to store the list of node identifiers
(nodeIDs), as pointers to the children nodes. The node identifier of the

www.geospatial.org/
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root node can be stored in a table, called the metadata table for that
index. Oracle Spatial’s R-tree index implementation stores the tree
structure in a table and selects a node using an internal SQL
statement, as each node is visited (Kothuri et al., 2002). Thus, query
operations involve the processing of many recursive SQL statements,
which increases query processing time (Kothuri et al., 2002). The
octree, in contrast, can divide the entire space according to a specified
tiling level requiring only the tiling level to be stored, as the tree
structure can be rebuilt during querying; details are described in
Section 3.

A further advantage of the octree lies in its support for
optimized 3D pointcloud visualization (Koo and Shin, 2005).
Rendering of 3D pointclouds is computationally expensive, and
an SDBMS causes further delays due to I/O operations. However,
an octree can be utilized to filter visible points for rendering
according to a specific view frustum, instead of rendering all
points at once. Nonetheless, selection of an appropriate spatial
index depends on many factors, such as data distribution and data
type. Octrees provide an approach highly applicable to all 3D
pointcloud object types. The following section outlines how an
octree index can be implemented in Oracle Spatial.
3. Design of an octree index atop Oracle Spatial 11g

Oracle’s extensibility framework requires that a data cartridge
be implemented, to provide a new index structure. Data car-
tridges are re-usable, server-based components, which utilize
object types and features such as large objects, external proce-
dures, extensible indexing, and query optimization. Oracle’s
extensible indexing framework defines a set of interface methods.
These must be implemented in an object type, which is called
indextype. An indextype is an object that specifies the routines
that manage a domain (application-specific) index. It has two
major components: (1) methods that implement the index’s
behavior and (2) operators that the index supports.

This paper describes a new data cartridge implemented in
Oracle’s extensible indexing framework that enables octree
indexing, which is subsequently referred to as OCTREEINDEX. To
facilitate the analysis of 3D pointclouds, a window query operator
OT_CLIP_3D was also implemented, which performs a window
Fig. 1. Quadtree sectors. (a) 3D space dec
query on a given 3D point geometry stored in an Oracle
SDO_GEOMETRY data type. Spatial metadata information is stored
in the USER_SDO_GEOM_METADATA view provided by Oracle
Spatial (Kothuri et al., 2007, p. 45). The following presents the index
and related window query operator implementation.
3.1. Implementation of the octree index

An octree’s structure dictates that each internal node contains
exactly eight child nodes regardless of its many variants. In the
implementation herein a bucket point region (PR)-octree approach
was adopted, where the space is decomposed into cubic blocks (or
cells) through recursion, until a block is homogeneous (Samet, 2006).
While use of a bucket PR approach might seem an obvious solution,
this is not the direction that has been adopted to date (in either
research or commercial solutions). In fact, as of version 11g Oracle
deprecated the quadtree. The absence of continued support would
lead users to believe that further exploitation of this class of indexing
structures might not be useful. The contrary is shown in this paper.

By definition, an octree can result in an unbalanced hierarch-
ical tree when the data distribution is not uniform. However, this
requires the storage of the logical tree structure in the SDBMS for
recursive reconstruction of the tree structure during query
processing. While testing the presented implementation, it was
found that this compromised the system’s efficiency. Therefore,
the proposed implementation employs a fixed, maximum tree
height (also called its tiling level), thereby resulting in a balanced
tree. This improves query efficiency as neither the tree structure
nor recursive cells need to be stored, only the tiling level. The
selection of an appropriate tiling level is a decisive factor,
involving the dataset’s area and size. As such, experimentation
with different levels is needed to optimize performance for a
specific dataset. Particulars of this problem are further illustrated
in Section 4. The user can specify the tiling level through the
parameter OCTREE_LEVEL during index creation. Each cell is
associated with a unique code, herein referred to as the cell code.
The cell code is obtained by using z-ordering (i.e., Morton
encoding) of all cells at the specified level (Morton, 1966).

Fig. 1(a) illustrates the 3D space decomposition through an
octree, and Fig. 1(b) illustrates cell code generation. All cells in the
omposition. (b) Cell code generation.
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bottom half are assigned with the prefix ‘0’—zero, and all in the
top half are assigned with prefix ‘1’—one. Cells are marked south-
west (SW), south-east (SE), north-east (NE) and north-west (NW)
and associated codes are 00, 01, 10, and 11 consecutively. The
associated cell code is identified by traversing the octree from
root node to leaf node. For example, using B to represent the
bottom half and T to designate the top half, at tiling level 5, the
code for the path BNW(011)–TSW(100)–TNE(110)–BSE(001)–
BSW(000) is 011100110001000. Here, it only follows the tree
path where the cell associated to a node in the path contains the
point. The point’s ROWID and associated cell code are stored in an
index storage table. The metadata (e.g., tiling level, index name,
index owner, max level, min level, etc.) for the entire index are
stored as a row in an table called index metadata table.

The 3D query processing using this implementation is illustrated
in Fig. 2. To generate the result set for a spatial query, the octree
Fig. 2. Query proc

Fig. 3. Index creat
index is used as the primary filter to find the area of interest or
candidate geometries for this query. Fig. 3 illustrates use of a
primary and secondary filter during querying. The area of interest
is the sum of the cells of the octree that interact spatially (e.g.,
intersect, touch, inside, covered by) with the query geometry, as
established by the primary filter. These are identified by cell code,
and candidate geometries are identified by the associated cell code
from the index storage table. Candidate geometries are passed
through the intermediate filter and divided into two sets. Cells
inside or covered by the query geometry are identified as an exact
match. Points associated with these cells are sent directly to the
result set. The remaining cells (those that intersect or touch the
query window) are passed through the secondary filter, which is a
spatial function corresponding to the spatial query.

Notably, in Oracle Spatial there is no specific operator to
perform a window query. SDO_RELATE identifies all geometries
essing steps.

ion sequence.



Fig. 4. Steps needed for index creation.
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that interact in a specified manner with a query geometry. The
specified type of interaction could be INSIDE, CONTAINS, COVER-
EDBY, ON, COVERS, TOUCH, OVERLAPPEDBYINTERSECT, EQUAL,
and ANYINTERACT (Kothuri et al., 2007, pp 272–281). Since a 3D
window query operator was implemented herein, utilization of
the SDO_RELATE operator and a combination of interaction-type
(i.e., ‘QUERYTYPE¼WINDOW MASK¼ INSIDEþCOVEREDBY’) was
made in order to perform the window query on the R-tree index.
This has been passed through the ‘‘param’’ parameter of SDO_R-
ELATE operator. This retrieves all the points that are inside and
may also touch the boundary of the query window. In Oracle, the
combination of INSIDE and COVEREDBY is optimized. See Kothuri
et al. (2007), pp. 278–279 for a detailed description.

The Oracle extensibility framework requires that a new index
must implement a certain interface and related methods. The
name of the interface is ODCIIndex. Associated methods are
categorized into four classes: (1) index definition methods,
(2) index maintenance methods, (3) index scan methods, and
(4) index metadata method. Table 1 summarizes these methods
with implementation details described henceforth.

An implementation type is required to create the indextype
OCTREEINDEX and must contain the implementation of the
ODCIIndex interface methods. An object type known as the
implementation type and named OCTREE_IM is defined to imple-
ment the ODCIIndex interface methods. It contains the signature
and return type of the interface methods. The body of OCTREE_IM
contains the implementation of these, which can be implemented
using PL/SQL, C, Cþþ or Java. In this implementation, only the
ODCIGetInterfaces method is implemented in PL/SQL, while
others are implemented as Java callouts, which reside in a Java
class. A previously developed Java API was exploited (Kothuri
et al., 2007, p. 223) to enable Java applications to access and
process geometry objects managed in Oracle Spatial. OCTREE_IM
contains only the implementation of the method ODCIGetInter-
faces, while others are implemented in a Java class entitled
OctreeIndex. Mapping of the interface methods to the Java
methods is defined in OCTREE_IM. The process of index creation
is outlined below. Other methods implemented for the prototype,
as explained in Table 1, are created accordingly. Fig. 3 illustrates
the index creation process, and Fig. 4 illustrates requisite steps.

The ODCICreate method is invoked when a user issues the
‘‘CREATE INDEX’’ SQL statement of indextype OCTREEINDEX. This
Table 1
ODCIIndex interface methods.

Category Method name Invoked by

Definition
methods

ODCIIndexCreate() ‘‘CREATE INDEX’’ statement

ODCIIndexDrop() ‘‘DROP INDEX’’ statement

ODCIIndexAlter() ‘‘ALTER INDEX’’ statement

Maintenance
methods

ODCIIndexInsert() ‘‘INSERT INTO’’ statement on the

base table, which involves the

indexed column.

ODCIIndexUpdate() ‘‘UPDATE’’ statement on the base

table, which involves the indexed

column.

ODCIIndexDelete() ‘‘DELETE FROM’’ statement on the

base table, which involves the

indexed column.

Scan
methods

ODCIIndexStart() At the beginning of an index-scan.

ODCIIndexFetch() In order to fetch the row identifiers

those satisfies the operator

predicate.

ODCIIndexClose() At the end of the index-scan In

order to perform cleanup.

Metadata
methods

ODCIIndexGetMetadata() In order to write implementation-

specific metadata into the export

dump file using ‘‘Export’’ utility.
starts the index creation process. At first, metadata information
regarding the index is stored into an index metadata table named
OCTREE_INDEX_METADATA. Next, the octree structure is initialized,
and the 3D bounding of the 3D pointcloud sample is created as a
whole. Three-dimensional points stored as point geometry data
types are accessed from the base table through the Java Database
Connectivity connection with the database. These are inserted into
the octree structure, which returns a cell code for each point.

3.2. Operator implementation

Window queries are among the most commonly used first-step-
analysis operations for LiDAR data. As such, this query was imple-
mented and is referred to as OT_CLIP_3D. The operator returns all
point geometries inside and on the boundary of the specified 3D
cube and takes two SDO_GEOMETRY objects as input. The first is a
3D point geometry or a column of the type SDO_GEOMETRY that
contains a 3D point geometry on which the operator is applied. The
second is a simple solid of type SDO_GEOMETRY, which specifies the
query window. Every operator must be tied to an index for index-
based evaluation. Oracle’s extensible indexing framework requires
implementation of index scan methods to evaluate operators. These
are ODCIIndexStart, ODCIIndexFetch and ODCIIndexClose. Fig. 5 illus-
trates the invocation sequence of index scan methods.



Fig. 5. Index invocation.

Fig. 6. Query window.

Fig. 7. Sample of 3D data.
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At first, the interface method ODCIIndexStart is invoked by
Oracle with the operator name, arguments, and the lower and
upper bounds describing the predicate. This method is invoked to
begin the operator evaluation. A series of fetches are performed
by invoking the ODCIIndexFetch method to obtain row identifiers
or rows that satisfy the operator predicate. The number of
expected rows (nRows) in every fetch is specified by Oracle
during each invocation. The ROWIDs are placed into the place-
holder array (rowIds). Finally, before the destruction of the SQL
cursor, ODCIIndexClose is invoked by Oracle to end the operator
processing. Fig. 6 illustrates the window query performed on a 3D
pointcloud. The result set returns all point geometries inside or on
the boundary of the query window. In this example, all square
points are inside or on the boundary of the query window
(illustrated by the box of dotted lines). The OT_CLIP_3D operator
is evaluated through the octree index. Fig. 7 shows a sample of
the 3D data. Fig. 8 demonstrates the evaluation process. For ease
of illustration, the example is shown as a 2D case. The query
window is drawn in dotted lines and the resulting geometries
as solid squares. The octree is traversed to identify cells that
interact or are topologically related with the query window.
Possible topological relations are ‘‘inside’’, ‘‘intersect’’, ‘‘touch’’,
and ‘‘covered by’’ (Egenhofer and Franzosa, 1991).

Blocks that are (1) inside the query window or (2) intersect with
it or (3) touch it, or (4) are covered by it are identified, and the area
of interest is the union of these blocks. This area is searched to
generate the result set. In Fig. 8, Block E is inside the query window,
block H is covered by it, and all others intersect with it.

The intermediate filter identifies any exact match (e.g., blocks
E and H). A block inside the query window, implies that all points
belonging to such blocks are also inside the query window. These
points are sent directly to the result set and labelled as known,
and the blocks are labelled as known regions. Points covered by



Fig. 8. Octree query window.
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the other blocks are passed through the secondary filter, as those
points are labelled as unknown and require further processing.
The following benchmarks this approach for the purpose of
validation.
Table 2
Evaluation results.

Small dataset of 2881,899 million
points

Large dataset of 65,562,235 million
points

Window
size (m2)

Avg. query
response

time in ms
(R-tree)

Avg. query
response

time in ms
(Octree)

Window
size (m2)

Avg. query
response

time in ms
(R-tree)

Avg. query
response

time in ms
(Octree)

25 3,720.40 1686.28 400 83,026.65 128,814.14

100 10,868.86 1975.92 1,600 166,708.00 149,541.69

225 17,170.21 3121.44 3,660 321,180.30 243,061.55

400 23,269.12 4628.71 6,400 467,678.50 245,920.08

625 30,816.40 5804.15 10,000 641,871.10 250,993.00

900 42,541.17 6934.25 14,400 864,345.50 257,525.44

1225 42,277.08 6329.17 19,600 1065,853.90 269,746.34

1600 68,354.84 7521.83 25,600 1281,446.50 286,461.88

2025 70,115.16 8328.33 32,400 1535,893.00 310,641.75

2500 83,238.25 9462.75 40,000 1933,097.50 321,632.50
4. Evaluation

This section benchmarks window query response times on a
3D LiDAR pointcloud dataset between R-tree and octree indexing.
The evaluation was conducted on a computer with the Intel Core2
Duo CPU 2.53 GHz and 4 GB RAM, 7200 SATA harddrive using
Oracle 11g release 11.1.0.6.

The 3D LiDAR pointcloud dataset was stored in Oracle’s
SDO_GEOMETRY data type. To benchmark performance of spatial
queries on 3D pointcloud data, the dataset was indexed using the
R-tree and the octree index, independently. For this, two ran-
domly selected datasets from a dense aerial 3D LiDAR flyover of
Dublin’s city centre (Hinks et al., 2009) were queried in order to
test each index. Given the dense and somewhat random distribu-
tion of the source data set this has ensured that realistic query
sizes are used for evaluation. One query contained nearly 2.9 mil-
lion points and the other almost 66 million points. Query
response times were compared for various window sizes. The
R-tree index was created using Oracle’s existing, in-built spatial
index. The octree index structure was created through the
implementation described in Section 3.1 in Oracle’s extensible
indexing framework.

In Oracle Spatial, the R-tree index supports only one operator
with which a 3D spatial query can be performed. Furthermore,
this provides no window query functionality. Consequently, to
perform a window query on a LiDAR dataset, a 2D index was
created to allow for a 2D window query. Since Oracle’s in-built 2D
R-tree index is created on the 3D pointcloud, it is assumed that
the index is created on the 2D projection of the 3D pointcloud
data. The SDO_RELATE operator provides functionality similar to a
general window query. The ‘‘inside and touch’’ masks (Kothuri
et al., 2007, p. 274), and the 2D query window are specified to
perform the window query.

The octree index implemented herein supports the operator
OT_CLIP_3D, which performs a 3D window query on 3D point-
cloud data. To create the octree index, it is very important to
determine the tiling level for efficient query processing. For this
purpose, all points are considered. The indexed points per cell and
cell volume decrease as the tiling level increases, which in turn
decreases the total number of candidate geometries. Conversely,
the number of leaf nodes increases (leaf nodes at tiling level ‘N’ is
8N). As such, memory consumption increases at higher tiling
levels. Tiling level five was experimentally selected for this
dataset. This was based on Oracle’s R-tree recommendation of a
tiling level of 8, which generated a memory error. Tiling levels
4–7 were then tried, with level 5 generating the best results;
there are future opportunities for automated determination of
this. For the small dataset of 2,881,899 points/85, average number
of points indexed by each octree node 87.95. For the large dataset
of 65,562,235 Points/85, average number of points indexed by
each Octree node was 2000.8.

In the octree implementation, the index storage table has two
columns: OCTREE_CODE (oracle data type RAW, in order to store
the cell code, requires 3 bits for each branch), and OCTREE_R-
OWID (oracle data type ROWID, 10 bytes in size, in order to store
the ROWID of the 3D point geometry). In the experiment herein,
OCTREE_LEVEL¼5 and the size of index storage table is (12�N)
bytes. The implementation does not require any additional
storage for temporary worktables during index creation. Conse-
quently, for a set of N rows in a table, the R-tree spatial index
roughly requires 100�3�N bytes of storage space for the spatial
index table. Also, during index creation, it requires an additional
200�3�N to 300�3�N bytes for temporary worktables.
(Kothuri et al., 2007, p.253).

In this example, a fairly uniform aerial LiDAR dataset was used
as it represents a portion of Dublin’s city centre in Ireland, where
relatively few large occlusions exist, as average building height is
low. With this dataset, the response time of a 2D window query
(x- and y-coordinates) using an R-tree index was compared with
the response time of a 3D window query (x-, y- and z-coordinates)
using an octree index. The query response times, as well as the
number of resulting geometries, were expected to increase with a
larger query window size (Kothuri et al., 2002). For reasons of
comparability, the same number of resulting geometries for a
window query were used to test both indexes. To ensure this for
the octree index, the maximum and minimum values of the
z-coordinates of the query window were set to the minimum
and maximum values of the underlying space. The same values
were used for x- and y- coordinates for the octree and R-tree
indexes. Thus, the total number of resulting geometries was equal
for both indexes.

Table 2 presents the average query response time with the
increase of the window size for both indexes. For every window
size, up to 625 queries were performed in the underlying space.
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The details of these queries are shown in Table 3, and the reported
times (Figs. 9 and 10) represent the average of these queries. The
octree index nearly consistently outperformed the R-tree index
for all window sizes.

The dataset used in Fig. 10 is �23 times the size Fig. 9’s
dataset where the octree is twice as fast as the R-tree for the small
window of (25 m2) and 8 times faster for the large window
(2500 m2). In Fig. 10, for the small window of 400 m2, the R-tree
outperforms the octree, but once the window reaches 1600 m2,
Fig. 9. R-tree vs. Octree 2881,

Fig. 10. R-tree vs Octree 65,562,235

Table 3
Number of window queries per window size.

Small dataset of 2881,899 points Large dataset of 65,562,235 points

Window size (m2) No. of queries

performed (i.e.,

no. of different

windows)

Window size (m2) No. of queries

performed

(i.e., no. of

different

windows)

25 (5 m�5 m) 588 400 (20 m�20 m) 625

100 (10 m�10 m) 140 1,600 (40 m�40 m) 144

225 (15 m�15 m) 63 3,600 (60 m�60 m) 64

400 (20 m�20 m) 35 6,400 (80 m�80 m) 36

625 (25 m�25 m) 20 10,000 (100 m�100 m) 25

900 (30 m�30 m) 12 14,400 (120 m�120 m) 16

1,225 (35 m�35 m) 12 19,600 (140 m�140 m) 9

1,600 (40 m�40 m) 6 25,600 (160 m�160 m) 9

2,025 (45 m�45 m) 6 32,400 (180 m�180 m) 4

2,500 (50 m�50 m) 4 40,000 (200 m�200 m) 4
the octree is better, with a six-fold improvement for a 40,000 m2

window.
5. Conclusions and summary

This paper implements and evaluates an octree index,
intended for 3D pointcloud data from laser scanning, employing
Oracle’s extensible indexing framework. However, its function-
ality may be cross-applicable to other pointcloud datasets and
implementable in other SDMSs as they expand their 3D capabil-
ities. An operator using the proposed octree index was imple-
mented to perform 3D window queries. This was described, along
with some optimizations. The newly implemented octree index
and Oracle’s inbuilt R-tree index were compared using data from
a dense, aerially-based, 3D pointcloud. The octree consistently
outperformed the R-tree for almost every window size and more
so with increases in query window size, to as much as an eight-
fold difference. The considerably improved performance, while
notable in itself, needs to be considered further in light of the
additional functionality offered by the octree in terms of a more
appropriate storage and indexing of pointcloud data in particular.
As such, groupings into appropriate cells may occur according to a
predefined semantic, such as for example colour, intensity, or
elevation information. Furthermore, the approach is not plagued
with the R-tree’s related uncertainty when trying to select a
bounding box for point. It may be argued that the under-
performance of the R-tree is due to using unsuitable parameters
899 points in the dataset.

million points in the dataset.
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during bounding-box generation. However, there is always a
trade-off between different options for generating an indexing
structure. These might not be obvious to an inexperienced GIS
technician/user and often result in a ‘‘trial and error’’ process. If
the data set is very large, the ‘‘trial-and-error’’ process phase
might take considerable time.

Since only one operator has been implemented so far, further
work is envisioned (e.g., nearest neighbor or within distance) to
more comprehensively evaluate the octree’s potential. In this
prototype, tiling level is user determined. Further work will
incorporate a feature for automatic tiling level determination,
along with exploitation of the visualization-based efficiencies that
this approach will engender.

In Oracle Spatial, the SDO_PC data type applies an R-tree index
only to the groups of clusters that contain point geometries.
An alternative approach to the one presented in this paper may
rely on a two-step index, where an octree index is applied to
points inside a block, and an R-tree is applied as a higher-level
index to the block extents, as polygons are better indexed by an R-
tree. There may also be specific cases where the converse of
ordering proves advantageous with an octree over an R-tree.
Future work will evaluate these. Additionally, better storage and
indexing of 3D pointcloud data may better enable web dissemi-
nation of substantial LiDAR datasets. Finally, recently proposed
alternative solutions explore cluster and parallel computing
(Hongchao and Wang, 2011; Guan and Wu, 2010). While
beyond this paper’s scope, combining such techniques with
the approach introduced herein represents an exciting future
research direction.
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