
01-1Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Developing Applications for
Apache Hadoop

Sarah Sproehnle, sarah@cloudera.com

01-2Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Agenda

 The core concepts of Hadoop (HDFS and MapReduce)

 Writing a MapReduce program

 Overview of Hive and Pig

 Common algorithms that are used with Hadoop

 Graph processing in MapReduce

 Overview of HBase

01-3Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Hadoop: Basic Concepts

In this section you will learn

 What features the Hadoop Distributed File System (HDFS)
provides

 The concepts behind MapReduce

 How a Hadoop cluster operates

 What other Hadoop Ecosystem projects exist

01-4Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Hadoop Project

 Hadoop is an open-source project overseen by the Apache
Software Foundation

 Originally based on papers published by Google in 2003 and
2004

 Hadoop committers work at several different organizations
– Including Cloudera, Yahoo!, Facebook

01-5Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Hadoop Components

 Hadoop consists of two core components
– The Hadoop Distributed File System (HDFS)
– MapReduce

 There are many other projects based around core Hadoop
– Often referred to as the ‘Hadoop Ecosystem’
– Pig, Hive, HBase, Flume, Oozie, Sqoop, etc

 A set of machines running HDFS and MapReduce is known as a
Hadoop Cluster

– Individual machines are known as nodes
– A cluster can have as few as one node, as many as several

thousands
– More nodes = better performance!

01-6Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

HDFS Basic Concepts

 HDFS performs best with a ‘modest’ number of large files
– Millions, rather than billions, of files
– Each file typically 100MB or more

 Files in HDFS are ‘write once’
– No random writes to files are allowed
– Append support is included in Cloudera’s Distribution including

Apache Hadoop (CDH) for HBase reliability
– Not recommended for general use

 HDFS is optimized for large, streaming reads of files
– Rather than random reads

01-7Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

How Files Are Stored

 Files are split into blocks
– Each block is usually 64MB or 128MB

 Data is distributed across many machines at load time
– Different blocks from the same file will be stored on different

machines
– This provides for efficient MapReduce processing (see later)

 Blocks are replicated across multiple machines, known as
DataNodes

– Default replication is three-fold
– Meaning that each block exists on three different machines

 A master node called the NameNode keeps track of which blocks
make up a file, and where those blocks are located

– Known as the metadata

01-8Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

How Files Are Stored: Example

 NameNode holds metadata
for the two files (Foo.txt and
Bar.txt)

 DataNodes hold the actual
blocks

– Each block will be 64MB or
128MB in size

– Each block is replicated
three times on the cluster

01-9Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

More On The HDFS NameNode

 The NameNode daemon must be running at all times
– If the NameNode stops, the cluster becomes inaccessible
– Your system administrator will take care to ensure that the

NameNode hardware is reliable!

 The NameNode holds all of its metadata in RAM for fast access
– It keeps a record of changes on disk for crash recovery

 A separate daemon known as the Secondary NameNode takes
care of some housekeeping tasks for the NameNode

– Be careful: The Secondary NameNode is not a backup
NameNode!

01-10Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Accessing HDFS

 Applications can read and write HDFS files directly via the Java
API

– Covered later in the course

 Typically, files are created on a local filesystem and must be
moved into HDFS

 Likewise, files stored in HDFS may need to be moved to a
machine’s local filesystem

 Access to HDFS from the command line is achieved with the
hadoop fs command

01-11Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

hadoop fs Examples

 Copy file foo.txt from local disk to the user’s directory in HDFS

– This will copy the file to /user/username/foo.txt

 Get a directory listing of the user’s home directory in HDFS

 Get a directory listing of the HDFS root directory

hadoop fs -copyFromLocal foo.txt foo.txt

hadoop fs -ls

hadoop fs –ls /

01-12Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

hadoop fs Examples (cont’d)

 Display the contents of the HDFS file /user/fred/bar.txt

 Move that file to the local disk, named as baz.txt

 Create a directory called input under the user’s home directory

hadoop fs –cat /user/fred/bar.txt

hadoop fs –copyToLocal /user/fred/bar.txt baz.txt

hadoop fs –mkdir input

01-13Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

What Is MapReduce?

 MapReduce is a method for distributing a task across multiple
nodes

 Each node processes data stored on that node
– Where possible

 Consists of two phases:
– Map
– Reduce

01-14Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Features of MapReduce

 Automatic parallelization and distribution

 Fault-tolerance

 Status and monitoring tools

 A clean abstraction for programmers
– MapReduce programs are usually written in Java

– Can be written in any scripting language using Hadoop
Streaming (see later)

– All of Hadoop is written in Java

 MapReduce abstracts all the ‘housekeeping’ away from the
developer

– Developer can concentrate simply on writing the Map and
Reduce functions

01-15Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: The Big Picture

01-16Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: The JobTracker

 MapReduce jobs are controlled by a software daemon known as
the JobTracker

 The JobTracker resides on a ‘master node’
– Clients submit MapReduce jobs to the JobTracker
– The JobTracker assigns Map and Reduce tasks to other nodes

on the cluster
– These nodes each run a software daemon known as the

TaskTracker
– The TaskTracker is responsible for actually instantiating the Map

or Reduce task, and reporting progress back to the JobTracker

01-17Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: Terminology

 A job is a ‘full program’
– A complete execution of Mappers and Reducers over a dataset

 A task is the execution of a single Mapper or Reducer over a
slice of data

 A task attempt is a particular instance of an attempt to execute a
task

– There will be at least as many task attempts as there are tasks
– If a task attempt fails, another will be started by the JobTracker
– Speculative execution (see later) can also result in more task

attempts than completed tasks

01-18Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: The Mapper

 Hadoop attempts to ensure that Mappers run on nodes which
hold their portion of the data locally, to avoid network traffic

– Multiple Mappers run in parallel, each processing a portion of the
input data

 The Mapper reads data in the form of key/value pairs

 It outputs zero or more key/value pairs

map(in_key, in_value) ->
(inter_key, inter_value) list

01-19Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: The Mapper (cont’d)

 The Mapper may use or completely ignore the input key
– For example, a standard pattern is to read a line of a file at a time

– The key is the byte offset into the file at which the line starts
– The value is the contents of the line itself
– Typically the key is considered irrelevant

 If the Mapper writes anything out, the output must be in the form
of key/value pairs

01-20Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Mapper: Upper Case Mapper

 Turn input into upper case (pseudo-code):

let map(k, v) =

emit(k.toUpper(), v.toUpper())

('foo', 'bar') -> ('FOO', 'BAR')

('foo', 'other') -> ('FOO', 'OTHER')

('baz', 'more data') -> ('BAZ', 'MORE DATA')

01-21Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Mapper: Explode Mapper

 Output each input character separately (pseudo-code):

let map(k, v) =
foreach char c in v:

emit (k, c)

('foo', 'bar') -> ('foo', 'b'), ('foo', 'a'),
('foo', 'r')

('baz', 'other') -> ('baz', 'o'), ('baz', 't'),
('baz', 'h'), ('baz', 'e'),
('baz', 'r')

01-22Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Mapper: Filter Mapper

 Only output key/value pairs where the input value is a prime
number (pseudo-code):

let map(k, v) =
if (isPrime(v)) then emit(k, v)

('foo', 7) -> ('foo', 7)

('baz', 10) -> nothing

01-23Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Mapper: Changing Keyspaces

 The key output by the Mapper does not need to be identical to
the input key

 Output the word length as the key (pseudo-code):

let map(k, v) =
emit(v.length(), v)

('foo', 'bar') -> (3, 'bar')

('baz', 'other') -> (5, 'other')

('foo', 'abracadabra') -> (11, 'abracadabra')

01-24Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: The Reducer

 After the Map phase is over, all the intermediate values for a
given intermediate key are combined together into a list

 This list is given to a Reducer
– There may be a single Reducer, or multiple Reducers

– This is specified as part of the job configuration (see later)
– All values associated with a particular intermediate key are

guaranteed to go to the same Reducer
– The intermediate keys, and their value lists, are passed to the

Reducer in sorted key order
– This step is known as the ‘shuffle and sort’

 The Reducer outputs zero or more final key/value pairs
– These are written to HDFS
– In practice, the Reducer usually emits a single key/value pair for

each input key

01-25Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Reducer: Sum Reducer

 Add up all the values associated with each intermediate key
(pseudo-code):

let reduce(k, vals) =
sum = 0
foreach int i in vals:

sum += i
emit(k, sum)

(’bar', [9, 3, -17, 44]) -> (’bar', 39)

(’foo', [123, 100, 77]) -> (’foo', 300)

01-26Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Example Reducer: Identity Reducer

 The Identity Reducer is very common (pseudo-code):

let reduce(k, vals) =
foreach v in vals:

emit(k, v)

('foo', [9, 3, -17, 44]) -> ('foo', 9), ('foo', 3),

('foo', -17), ('foo', 44)

('bar', [123, 100, 77]) -> ('bar', 123), ('bar', 100),
('bar', 77)

01-27Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce Example: Word Count

 Count the number of occurrences of each word in a large
amount of input data

– This is the ‘hello world’ of MapReduce programming

map(String input_key, String input_value)
foreach word w in input_value:

emit(w, 1)

reduce(String output_key,
Iterator<int> intermediate_vals)

set count = 0
foreach v in intermediate_vals:

count += v
emit(output_key, count)

01-28Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce Example: Word Count (cont’d)

 Input to the Mapper:

 Output from the Mapper:

(3414, 'the cat sat on the mat')
(3437, 'the aardvark sat on the sofa')

('the', 1), ('cat', 1), ('sat', 1), ('on', 1),
('the', 1), ('mat', 1), ('the', 1), ('aardvark', 1),
('sat', 1), ('on', 1), ('the', 1), ('sofa', 1)

01-29Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce Example: Word Count (cont’d)

 Intermediate data sent to the Reducer:

 Final Reducer output:

('aardvark', [1])
('cat', [1])
('mat', [1])
('on', [1, 1])
('sat', [1, 1])
('sofa', [1])
('the', [1, 1, 1, 1])

('aardvark', 1)
('cat', 1)
('mat', 1)
('on', 2)
('sat', 2)
('sofa', 1)
('the', 4)

01-30Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

MapReduce: Is a Slow Mapper a Bottleneck?

 It is possible for one Map task to run more slowly than the others
– Perhaps due to faulty hardware, or just a very slow machine

 It would appear that this would create a bottleneck
– The reduce method in the Reducer cannot start until every

Mapper has finished

 Hadoop uses speculative execution to mitigate against this
– If a Mapper appears to be running significantly more slowly than

the others, a new instance of the Mapper will be started on
another machine, operating on the same data

– The results of the first Mapper to finish will be used
– Hadoop will kill off the Mapper which is still running

01-31Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Installing A Hadoop Cluster

 Easiest way to download and install Hadoop, either for a full
cluster or in pseudo-distributed mode, is by using Cloudera’s
Distribution including Apache Hadoop (CDH)

– Vanilla Hadoop plus many patches, backports, bugfixes
– Supplied as a Debian package (for Linux distributions such as

Ubuntu), an RPM (for CentOS/RedHat Enterprise Linux), and as
a tarball

– Full documentation available at http://cloudera.com/

01-32Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Five Hadoop Daemons

 Hadoop is comprised of five separate daemons
 NameNode

– Holds the metadata for HDFS
 Secondary NameNode

– Performs housekeeping functions for the NameNode
– Is not a backup or hot standby for the NameNode!

 DataNode
– Stores actual HDFS data blocks

 JobTracker
– Manages MapReduce jobs, distributes individual tasks to

machines running the…
 TaskTracker

– Instantiates and monitors individual Map and Reduce tasks

01-33Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Five Hadoop Daemons (cont’d)

 Each daemon runs in its own Java Virtual Machine (JVM)

 No node on a real cluster will run all five daemons
– Although this is technically possible

 We can consider nodes to be in two different categories:
– Master Nodes

– Run the NameNode, Secondary NameNode, JobTracker
daemons

– Only one of each of these daemons runs on the cluster
– Slave Nodes

– Run the DataNode and TaskTracker daemons
– A slave node will run both of these daemons

01-34Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Basic Cluster Configuration

01-35Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Basic Cluster Configuration (cont’d)

 On very small clusters, the NameNode, JobTracker and
Secondary NameNode can all reside on a single machine

– It is typical to put them on separate machines as the cluster
grows beyond 20-30 nodes

 Each dotted box on the previous diagram represents a separate
Java Virtual Machine (JVM)

01-36Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Submitting A Job

 When a client submits a job, its configuration information is
packaged into an XML file

 This file, along with the .jar file containing the actual program
code, is handed to the JobTracker

– The JobTracker then parcels out individual tasks to TaskTracker
nodes

– When a TaskTracker receives a request to run a task, it
instantiates a separate JVM for that task

– TaskTracker nodes can be configured to run multiple tasks at the
same time

– If the node has enough processing power and memory

01-37Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Submitting A Job (cont’d)

 The intermediate data is held on the TaskTracker’s local disk

 As Reducers start up, the intermediate data is distributed across
the network to the Reducers

 Reducers write their final output to HDFS

 Once the job has completed, the TaskTracker can delete the
intermediate data from its local disk

– Note that the intermediate data is not deleted until the entire job
completes

02-1Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Writing a MapReduce
Program

02-2Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Writing a MapReduce Program

In this section you will learn

 How to use the Hadoop API to write a MapReduce program in
Java

 How to use the Streaming API to write Mappers and Reducers in
other languages

 How to use Eclipse to speed up your Hadoop development

 The differences between the Old and New Hadoop APIs

02-3Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The MapReduce Flow: Introduction

 On the following slides we show the MapReduce flow

 Each of the portions (RecordReader, Mapper, Partitioner,
Reducer, etc.) can be created by the developer

 You will always create at least a Mapper, Reducer, and driver
code

– Those are the portions we will investigate in this chapter

02-4Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The MapReduce Flow: The Mapper

02-5Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The MapReduce Flow: Shuffle and Sort

02-6Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The MapReduce Flow: Reducers to Outputs

02-7Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Our MapReduce Program: WordCount

 To investigate the API, we will dissect the WordCount program

 This consists of three portions
– The driver code

– Code that runs on the client to configure and submit the job
– The Mapper
– The Reducer

 Before we look at the code, we need to cover some basic
Hadoop API concepts

02-8Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Getting Data to the Mapper

 The data passed to the Mapper is specified by an InputFormat
– Specified in the driver code
– Defines the location of the input data

– A file or directory, for example
– Determines how to split the input data into input splits

– Each Mapper deals with a single input split
– InputFormat is a factory for RecordReader objects to extract

(key, value) records from the input source

02-9Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Getting Data to the Mapper (cont’d)

02-10Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Some Standard InputFormats

 FileInputFormat
– The base class used for all file-based InputFormats

 TextInputFormat
– The default
– Treats each \n-terminated line of a file as a value
– Key is the byte offset within the file of that line

 KeyValueTextInputFormat
– Maps \n-terminated lines as ‘key SEP value’

– By default, separator is a tab
 SequenceFileInputFormat

– Binary file of (key, value) pairs with some additional metadata
 SequenceFileAsTextInputFormat

– Similar, but maps (key.toString(), value.toString())

02-11Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Keys and Values are Objects

 Keys and values in Hadoop are Objects

 Values are objects which implement Writable

 Keys are objects which implement WritableComparable

02-12Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

What is Writable?

 Hadoop defines its own ‘box classes’ for strings, integers and so
on

– IntWritable for ints
– LongWritable for longs
– FloatWritable for floats
– DoubleWritable for doubles
– Text for strings
– Etc.

 The Writable interface makes serialization quick and easy for
Hadoop

 Any value’s type must implement the Writable interface

02-13Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

What is WritableComparable?

 A WritableComparable is a Writable which is also
Comparable

– Two WritableComparables can be compared against each
other to determine their ‘order’

– Keys must be WritableComparables because they are
passed to the Reducer in sorted order

– We will talk more about WritableComparable later

 Note that despite their names, all Hadoop box classes implement
both Writable and WritableComparable

– For example, IntWritable is actually a
WritableComparable

02-14Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver Code: Introduction

 The driver code runs on the client machine

 It configures the job, then submits it to the cluster

02-15Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver: Complete Code

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n",
getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);

02-16Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver: Complete Code (cont’d)

conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

02-17Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver: Import Statements

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n",
getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);

You will typically import these classes into every
MapReduce job you write. We will omit the import
statements in future slides for brevity.

02-18Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver: Main Code

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

02-19Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver Class: Using ToolRunner

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Your driver class extends Configured and implements Tool.
This allows the user to specify configuration settings on the
command line, which will then be incorporated into the job’s
configuration when it is submitted to the server. Although this
is not compulsory, it is considered a best practice. (We will
discuss ToolRunner in more detail later.)

02-20Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Driver Class: Using ToolRunner (cont’d)

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

The main method simply calls ToolRunner.run(), passing
in the driver class and the command-line arguments. The job
will then be configured and submitted in the run method.

02-21Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sanity Checking The Job’s Invocation

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

The first step is to ensure that we have been given two
command-line arguments. If not, print a help message and
exit.

02-22Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Configuring The Job With JobConf

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

To configure the job, create a new JobConf object and specify
the class which will be called to run the job.

02-23Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Creating a New JobConf Object

 The JobConf class allows you to set configuration options for
your MapReduce job

– The classes to be used for your Mapper and Reducer
– The input and output directories
– Many other options

 Any options not explicitly set in your driver code will be read
from your Hadoop configuration files

– Usually located in /etc/hadoop/conf

 Any options not specified in your configuration files will receive
Hadoop’s default values

02-24Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Naming The Job

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Give the job a meaningful name.

02-25Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specifying Input and Output Directories

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);

conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Next, specify the input directory from which data will be read,
and the output directory to which final output will be written.

02-26Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specifying the InputFormat

 The default InputFormat (TextInputFormat) will be used unless
you specify otherwise

 To use an InputFormat other than the default, use e.g.
conf.setInputFormat(KeyValueTextInputFormat.class)

02-27Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Determining Which Files To Read

 By default, FileInputFormat.setInputPaths() will read all
files from a specified directory and send them to Mappers

– Exceptions: items whose names begin with a period (.) or
underscore (_)

– Globs can be specified to restrict input
– For example, /2010/*/01/*

 Alternatively, FileInputFormat.addInputPath() can be
called multiple times, specifying a single file or directory each
time

 More advanced filtering can be performed by implementing a
PathFilter

– Interface with a method named accept
– Takes a path to a file, returns true or false depending on

whether or not the file should be processed

02-28Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specifying Final Output With OutputFormat

 FileOutputFormat.setOutputPath() specifies the directory
to which the Reducers will write their final output

 The driver can also specify the format of the output data
– Default is a plain text file
– Could be explicitly written as

conf.setOutputFormat(TextOutputFormat.class);

 We will discuss OutputFormats in more depth in a later chapter

02-29Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specify The Classes for Mapper and Reducer

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Give the JobConf object information about which classes are
to be instantiated as the Mapper and Reducer.

02-30Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specify The Intermediate Data Types

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Specify the types of the intermediate output key and value
produced by the Mapper.

02-31Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Specify The Final Output Data Types

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Specify the types of the Reducer’s output key and value.

02-32Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Running The Job

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Finally, run the job by calling the runJob method.

02-33Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Running The Job (cont’d)

 There are two ways to run your MapReduce job:
– JobClient.runJob(conf)

– Blocks (waits for the job to complete before continuing)
– JobClient.submitJob(conf)

– Does not block (driver code continues as the job is running)

 JobClient determines the proper division of input data into
InputSplits

 JobClient then sends the job information to the JobTracker
daemon on the cluster

02-34Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Reprise: Driver Code

public class WordCount extends Configured implements Tool {
public int run(String[] args) throws Exception {

if (args.length != 2) {
System.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;

}
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);
conf.setReducerClass(SumReducer.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

02-35Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Mapper: Complete Code

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class WordMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {

if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

02-36Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Mapper: import Statements

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class WordMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {

if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

You will typically import java.io.IOException, and
the org.apache.hadoop classes shown, in every
Mapper you write. We will omit the import statements
in future slides for brevity.

02-37Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Mapper: Main Code

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

02-38Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Mapper: Main Code (cont’d)

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

Your Mapper class should extend MapReduceBase,
and implement the Mapper interface. The Mapper
interface expects four generics, which define the types
of the input and output key/value pairs. The first two
parameters define the input key and value types, the
second two define the output key and value types.

02-39Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The map Method

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

The map method’s signature looks like this. It will be
passed a key, a value, an OutputCollector object
and a Reporter object. The OutputCollector is
used to write the intermediate data; you must specify
the data types that it will write.

02-40Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The map Method: Processing The Line

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

value is a Text object, so we retrieve the string it
contains.

02-41Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The map Method: Processing The Line (cont’d)

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

We then split the string up into words using any non-
alphanumeric characters as the word delimiter, and
loop through those words.

02-42Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Outputting Intermediate Data

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

To emit a (key, value) pair, we call the collect method of our
OutputCollector object. The key will be the word itself, the
value will be the number 1. Recall that the output key must be of
type WritableComparable, and the value must be a Writable.

02-43Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Reprise: The Map Method

public class WordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String s = value.toString();
for (String word : s.split("\\W+")) {
if (word.length() > 0) {
output.collect(new Text(word), new IntWritable(1));

}
}

}
}

02-44Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Reporter Object

 Notice that in this example we have not used the Reporter
object which was passed to the Mapper

 The Reporter object can be used to pass some information
back to the driver code

 We will investigate the Reporter later in the course

02-45Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Reducer: Complete Code

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {

IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

02-46Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Reducer: Import Statements

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {

IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

As with the Mapper, you will typically import
java.io.IOException, and the org.apache.hadoop
classes shown, in every Reducer you write. You will also
import java.util.Iterator, which will be used to step
through the values provided to the Reducer for each key.
We will omit the import statements in future slides for
brevity.

02-47Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Reducer: Main Code

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

02-48Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Reducer: Main Code (cont’d)

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

Your Reducer class should extend MapReduceBase
and implement Reducer. The Reducer interface
expects four generics, which define the types of the
input and output key/value pairs. The first two
parameters define the intermediate key and value
types, the second two define the final output key and
value types. The keys are WritableComparables,
the values are Writables.

02-49Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The reduce Method

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

The reduce method receives a key and an Iterator of
values; it also receives an OutputCollector object
and a Reporter object.

02-50Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

Processing The Values

We use the hasNext() and next() methods on
values to step through all the elements in the iterator.
In our example, we are merely adding all the values
together. We use value().get() to retrieve the
actual numeric value.

02-51Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Writing The Final Output

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

Finally, we write the output (key, value) pair using the
collect method of our OutputCollector object.

02-52Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Reprise: The Reduce Method

public class SumReducer extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int wordCount = 0;
while (values.hasNext()) {
IntWritable value = values.next();
wordCount += value.get();

}
output.collect(key, new IntWritable(wordCount));

}
}

02-53Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Streaming API: Motivation

 Many organizations have developers skilled in languages other
than Java, such as

– Ruby
– Python
– Perl

 The Streaming API allows developers to use any language they
wish to write Mappers and Reducers

– As long as the language can read from standard input and write
to standard output

02-54Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

The Streaming API: Advantages

 Advantages of the Streaming API:
– No need for non-Java coders to learn Java
– Fast development time
– Ability to use existing code libraries

02-55Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

How Streaming Works

 To implement streaming, write separate Mapper and Reducer
programs in the language of your choice

– They will receive input via stdin
– They should write their output to stdout

 If TextInputFormat (the default) is used, the streaming Mapper
just receives each line from the file on stdin

– No key is passed

 Streaming Mapper and streaming Reducer’s output should be
sent to stdout as key (tab) value (newline)

 Separators other than tab can be specified

02-56Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Streaming: Example Mapper

 Example streaming wordcount Mapper:

#!/usr/bin/env perl
while (<>) {
chomp;
(@words) = split /\s+/;
foreach $w (@words) {

print "$w\t1\n";
}

}

02-57Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Streaming Reducers: Caution

 Recall that in Java, all the values associated with a key are
passed to the Reducer as an Iterator

 Using Hadoop Streaming, the Reducer receives its input as (key,
value) pairs

– One per line of standard input

 Your code will have to keep track of the key so that it can detect
when values from a new key start appearing

02-58Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Launching a Streaming Job

 To launch a Streaming job, use e.g.,:

 Many other command-line options are available
– See the documentation for full details

 Note that system commands can be used as a Streaming Mapper
or Reducer

– For example: awk, grep, sed, or wc

hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming*.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myMapScript.pl \
-reducer myReduceScript.pl \
-file myMapScript.pl \
-file myReduceScript.pl

04-1Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Common MapReduce
Algorithms

04-2Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Common MapReduce Algorithms

 Some typical MapReduce algorithms, including
– Sorting
– Searching
– Indexing
– Collaborative filtering, clustering, classification
– Term Frequency – Inverse Document Frequency

04-3Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Introduction

 MapReduce jobs tend to be relatively short in terms of lines of
code

 It is typical to combine multiple small MapReduce jobs together
in a single workflow

– Often using Oozie (see later)

 You are likely to find that many of your MapReduce jobs use very
similar code

 In this chapter we present some very common MapReduce
algorithms

– These algorithms are frequently the basis for more complex
MapReduce jobs

04-4Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sorting

 MapReduce is very well suited to sorting large data sets

 Recall: keys are passed to the reducer in sorted order

 Assuming the file to be sorted contains lines with a single value:
– Mapper is merely the identity function for the value

(k, v) -> (v, _)
– Reducer is the identity function

(k, _) -> (k, '')

04-5Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sorting (cont’d)

 Trivial with a single reducer

 For multiple reducers, need to choose a partitioning function
such that if k1 < k2, partition(k1) <= partition(k2)

04-6Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Sorting as a Speed Test of Hadoop

 Sorting is frequently used as a speed test for a Hadoop cluster
– Mapper and Reducer are trivial

– Therefore sorting is effectively testing the Hadoop
framework’s I/O

 Good way to measure the increase in performance if you enlarge
your cluster

– Run and time a sort job before and after you add more nodes
– terasort is one of the sample jobs provided with Hadoop

– Creates and sorts very large files

04-7Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Searching

 Assume the input is a set of files containing lines of text

 Assume the Mapper has been passed the pattern for which to
search as a special parameter

– We saw how to pass parameters to your Mapper in the previous
chapter

 Algorithm:
– Mapper compares the line against the pattern
– If the pattern matches, Mapper outputs (line, _)

– Or (filename+line, _), or …
– If the pattern does not match, Mapper outputs nothing
– Reducer is the Identity Reducer

– Just outputs each intermediate key

04-8Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Indexing

 Assume the input is a set of files containing lines of text

 Key is the byte offset of the line, value is the line itself

 We can retrieve the name of the file using the Reporter object
– More details on how to do this later

04-9Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Inverted Index Algorithm

 Mapper:
– For each word in the line, emit (word, filename)

 Reducer:
– Identity function

– Collect together all values for a given key (i.e., all filenames
for a particular word)

– Emit (word, filename_list)

04-10Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Inverted Index: Dataflow

04-11Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Collaborative Filtering

 Collaborative Filtering is a technique for recommendations

 Example application: given people who each like certain books,
learn to suggest what someone may like based on what they
already like

 Very useful in helping users navigate data by expanding to
topics that have affinity with their established interests

 Collaborative Filtering algorithms are agnostic to the different
types of data items involved

– So they are equally useful in many different domains

04-12Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Clustering

 Clustering algorithms discover structure in collections of data
– Where no formal structure previously existed

 They discover what clusters, or ‘groupings’, naturally occur in
data

 Examples:
– Finding related news articles
– Computer vision (groups of pixels that cohere into objects)

04-13Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Classification

 The previous two techniques are considered ‘unsupervised’
learning

– The algorithm discovers groups or recommendations itself

 Classification is a form of ‘supervised’ learning

 A classification system takes a set of data records with known
labels

– Learns how to label new records based on that information

 Example:
– Given a set of e-mails identified as spam/not spam, label new e-

mails as spam/not spam
– Given tumors identified as benign or malignant, classify new

tumors

04-14Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Mahout: A Machine Learning Library

 Mahout is a Machine Learning library
– Included in CDH3
– Contains algorithms for each of the categories listed

 Algorithms included in Mahout:

Recommendation Clustering Classification
Pearson correlation
Log likelihood
Spearman correlation
Tanimoto coefficient
Singular value
decomposition (SVD)
Llinear interpolation
Cluster-based
recommenders

k-means clustering
Canopy clustering
Fuzzy k-means
Latent Dirichlet
analysis (LDA)

Stochastic gradient
descent (SGD)
Support vector
machine (SVM)
Naïve Bayes
Complementary naïve
Bayes
Random forests

04-15Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Term Frequency – Inverse Document
Frequency

 Term Frequency – Inverse Document Frequency (TF-IDF)
– Answers the question “How important is this term in a document”

 Known as a term weighting function
– Assigns a score (weight) to each term (word) in a document

 Very commonly used in text processing and search

 Has many applications in data mining

04-16Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

TF-IDF: Motivation

 Merely counting the number of occurrences of a word in a
document is not a good enough measure of its relevance

– If the word appears in many other documents, it is probably less
relevance

– Some words appear too frequently in all documents to be
relevant

– Known as ‘stopwords’

 TF-IDF considers both the frequency of a word in a given
document and the number of documents which contain the word

04-17Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

TF-IDF: Data Mining Example

 Consider a music recommendation system
– Given many users’ music libraries, provide “you may also like”

suggestions

 If user A and user B have similar libraries, user A may like an
artist in user B’s library

– But some artists will appear in almost everyone’s library, and
should therefore be ignored when making recommendations

– Almost everyone has The Beatles in their record collection!

04-18Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

TF-IDF Formally Defined

 Term Frequency (TF)
– Number of times a term appears in a document (i.e., the count)

 Inverse Document Frequency (IDF)

– N: total number of documents
– n: number of documents that contain a term

 TF-IDF
– TF × IDF

idf = log N
n









04-19Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF

 What we need:
– Number of times t appears in a document

– Different value for each document
– Number of documents that contains t

– One value for each term
– Total number of documents

– One value

04-20Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF With MapReduce

 Overview of algorithm: 3 MapReduce jobs
– Job 1: compute term frequencies
– Job 2: compute number of documents each word occurs in
– Job 3: compute TF-IDF

 Notation in following slides:
– tf = term frequency
– n = number of documents a term appears in
– N = total number of documents
– docid = a unique id for each document

04-21Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF: Job 1 – Compute tf

 Mapper
– Input: (docid, contents)
– For each term in the document, generate a (term, docid) pair

– i.e., we have seen this term in this document once
– Output: ((term, docid), 1)

 Reducer
– Sums counts for word in document
– Outputs ((term, docid), tf)

– I.e., the term frequency of term in docid is tf

 We can add a Combiner, which will use the same code as the
Reducer

04-22Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF: Job 2 – Compute n

 Mapper
– Input: ((term, docid), tf)
– Output: (term, (docid, tf, 1))

 Reducer
– Sums 1s to compute n (number of documents containing term)
– Note: need to buffer (docid, tf) pairs while we are doing this

(more later)
– Outputs ((term, docid), (tf, n))

04-23Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF: Job 3 – Compute TF-IDF

 Mapper
– Input: ((term, docid), (tf, n))
– Assume N is known (easy to find)
– Output ((term, docid), TF × IDF)

 Reducer
– The identity function

04-24Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Computing TF-IDF: Working At Scale

 Job 2: We need to buffer (docid, tf) pairs counts while summing
1’s (to compute n)

– Possible problem: pairs may not fit in memory!
– How many documents does the word “the” occur in?

 Possible solutions
– Ignore very-high-frequency words
– Write out intermediate data to a file
– Use another MapReduce pass

04-25Copyright © 2010-2012 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

TF-IDF: Final Thoughts

 Several small jobs add up to full algorithm
– Thinking in MapReduce often means decomposing a complex

algorithm into a sequence of smaller jobs

 Beware of memory usage for large amounts of data!
– Any time when you need to buffer data, there’s a potential

scalability bottleneck

06-1Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Introduction to
Apache HBase

06-2Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

What is HBase?

 HBase is . . .
– Open-Source
– Sparse
– Multidimensional
– Persistent
– Distributed
– Sorted Map
– Runs on top of HDFS
– Modeled after Google’s BigTable

06-3Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

HBase is a Sorted Distributed Map . . .

 HBase is a Map at its core
– Much like a PHP/Perl associative array, or JavaScript Object
- The map is indexed by a row key, column key, and a timestamp;

each value in the map is an uninterpreted array of bytes.

 Sorted
– Key/Value pairs are kept in lexicographic sorted order

- Very important when scanning large amounts of data
- Ensures like information is located in close proximity
- Impacts row/key design considerations (discussed later)

 Distributed
– Built upon a distributed filesystem (HDFS)
– Underlying file storage abstracts away complexities of distributed

computing

06-4Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

. . . that is also Sparse, Multidimensional and
Persistent

 Sparse
– A given row can have any number of columns
– May be gaps between keys

 Multidimensional
– All data is versioned using a timestamp (or configurable integer)
– Data is not updated, instead it is added with a new version

number

 Persistent
– Data“persists” after the program that created it is finished

06-5Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Hbase is NOT a Traditional RDBMS

 
  

  

  

  

  

  




 

06-6Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Introduction to HBase

What is HBase?

HDFS and HBase

Hands-on-Exercise: Using HDFS

HBase Usage Scenarios

Conclusion

06-7Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

HBase is built on Hadoop

 Hadoop provides:
– Fault tolerance
– Scalability
– Batch processing with MapReduce

 HBase provides:
– Random reads and writes
– High throughput
– Caching

06-8Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Usage Scenarios for HBase

 Lots of data
– 100s of Gigabytes up to Petabytes

 High write throughput
– 1000s/second per node

 Scalable cache capacity
– Adding nodes adds to available cache

 Data layout
– Excels at key lookup
– No penalty for sparse columns

06-9Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

When To Use HBase

 Use HBase if…
– You need random write, random read, or both (but not neither)
– You need to do many thousands of operations per second on

multiple TB of data
– Your access patterns are well-known and simple

 Don’t use HBase if…
– You only append to your dataset, and tend to read the whole

thing
– You primarily do ad-hoc analytics (ill-defined access patterns)
– Your data easily fits on one beefy node

06-10Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Overview of the data model

 Tables are made of rows and columns

 Every row has a row key (analogous to a primary key)
– Rows are stored sorted by row key for fast lookups

 All columns in HBase belong to a particular column family

 A table may have one or more column families
– Common to have a small number of column families
– Column families should rarely change
– A column family can have any number of columns

 Table cells are versioned, uninterpreted arrays of bytes

06-11Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

“User” Table Conceptual View

 Column consist of a column family prefix + qualifier

 Separate column families are useful for
– Data that is not frequently accessed together
– Data that uses different column family options (discussed later)

– e.g., compression

06-12Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Designing tables

 Same row key  same node
– Lookups by row key talk to a single region server

 Same column family  same set of physical files
– Retrieving data from a column family is sequential I/O

06-13Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Get Operation

 Used to look up a single rowkey
– Takes the row key as a byte array

 HTable’s get method retrieves a Result object

 Extract the data from the Result object
– getValue returns the cell value for Column Family + Column
– Value is returned as a byte array
– Bytes.toString(value) converst the byte array to a String

 If rowkey is not found theResult will have size 0
– R.size() or r.isEmpty() to verivy if rows were returned

Get g = new Get(Bytes.toBytes("rowkey"));

Result row = table.get(g);

byte[] value = row.getValue(Bytes.toBytes("colfam"),Bytes.toBytes("column"));

06-14Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Put Operation

 Used to add a row to a table
– Takes the row key as a byte array
– Use Bytes.toBytes(String) to convert a string to byte array

 Add method takes various forms:
– add(byte[] colfam, byte[] columns, byte[] value)
– add(byte[] colfam, byte[] column, long ts, byte[]

value)
– add(byte[] colfam_and_column, byte[] value)

Put p = new Put(Bytes.toBytes("rowkey"));

p.add(Bytes.toBytes("colfam"),Bytes.toBytes("column"),

Bytes.toBytes("value"));

table.put(p);

06-15Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Scan Operation

 Used to scan all the rows in a table
– Instantiate a Scan object
– Invoke the getScanner method
– Returns a Result Scanner

– Iterator containing Result objects

 When iterating over a scanner, one row is retrieved at a time
– Caching rows can make scanning faster but requires more RAM
– hbase.client.scanner.caching and setScannerCaching(int)

Scan s = new Scan();

ResultScanner scanner = table.getScanner(s);

for (Result rr : scanner) {

…

06-16Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Non-Java APIs

 A proxy server can marshal non-Java requests to HBase

 Advantage
– Applications can be written in C++, Python, PHP, Ruby, etc

 Disadvantages
– Requires running and monitoring an extra proxy daemon
– Slightly slower than native Java access

06-17Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

REST (Representational State Transfer)

 Stargate
– a service which exposes HBase objects via REST requests
– Returns JSON or XML
– Start the daemon:
$ bin/hbase-daemon.sh start \
org.apache.hadoop.hbase.stargate.Main -p <port>

– GET a row:
$ curl -H "Accept: text/xml"
http://host:port/table/rowkey/column:qualifier

– PUT a row:
$ curl -H "Content-Type: text/xml" --data '…'
http://host:port/table/rowkey/column:qualifier

06-18Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Apache Thrift

 Exposes services (such as HBase) to applications written in
other languages such as Python, Perl, C++ and Ruby

 Start the daemon:
$ bin/hbase-daemon.sh start thrift

 Generate the language-specific classes
$ thrift --gen py Hbase.thrift

 Look at Hbase.thrift for the set of methods available such as
getTableNames, createTable, getRow, mutateRow

06-19Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

HBase and MapReduce

 HBase tables as input or output of a MapReduce job

 TableInputFormat
– Splits HBase tables on their Regions
– Uses a scanner to read each split

 TableOutputFormat
– Uses Put to write records to a table

 HFileOutputFormat
– Writes data in the native HFile format (for bulk load)

06-20Copyright © 2010-2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

Questions?

Visit us @ booth 700

Sarah Sproehnle
sarah@cloudera.com

