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Finding an object inside a target image by querying multimedia data is desirable, but remains a

challenge. The effectiveness of region-based representation for content-based image retrieval is

extensively studied in the literature. One common weakness of region-based approaches is that

perform detection using low level visual features within the region and the homogeneous image

regions have little correspondence to the semantic objects. Thus, the retrieval results are often far from

satisfactory. In addition, the performance is significantly affected by consistency in the segmented

regions of the target object from the query and database images. Instead of solving these problems

independently, this paper proposes region-based object retrieval using the generalized Hough

transform (GHT) and adaptive image segmentation. The proposed approach has two phases. First, a

learning phase identifies and stores stable parameters for segmenting each database image. In the

retrieval phase, the adaptive image segmentation process is also performed to segment a query image

into regions for retrieving visual objects inside database images through the GHT with a modified

voting scheme to locate the target visual object under a certain affine transformation. The learned

parameters make the segmentation results of query and database images more stable and consistent.

Computer simulation results show that the proposed method gives good performance in terms of

retrieval accuracy, robustness, and execution speed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Humans use high level concepts in everyday life. However,
existing computer vision techniques automatically extract only
low level features from images. Object segmentation and
recognition is the primary step in applying computer vision to
image retrieval with higher level image analysis [1,2]. In
constrained applications, such as the human face and fingerprint,
high level concepts (faces or fingerprints) can be represented
using low level features [3]. In a general setting, however, there is
a semantic gap between real world objects and their low level
features. Automatic segmentation and object recognition via
object models is difficult without prior knowledge of the object
shapes.

The major bottleneck for a state-of-the-art approach to content-
based image retrieval (CBIR) is this gap between low level features
and high level semantic concepts. Therefore, an obvious approach
to improving a CBIR system is to reduce or, in the best case, a
bridge this gap. This paper presents an approach to retrieving
visual objects from a target image through region-based image
ll rights reserved.
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retrieval. Extensive research has been conducted in region-based
image retrieval [4–8]. Most existing region-based techniques
retrieve images according to the following procedures: (1) segment
images into multiple disjointed regions, (2) extract features from
image regions, and (3) perform region matching to obtain the
similarity between two images. Some approaches focus on
segmenting meaningful regions [9,10], while others focus on the
design of a configuration-based technique for image matching by
exploring the spatial relationships and arrangements of various
regions in an image [7,8]. However, little existing work has
emphasized enhancing the quality of features in regions.

It is difficult to perform object detection, recognition, or
object-based feature extraction without a perceptually coherent
grouping of the ‘‘raw’’ regions produced by image segmentation.
Automatic segmentation is far from perfect. Perceptual grouping
of segmented regions is expected to bridge the semantic gap
between image segmentation and high level image understand-
ing. For this purpose, Luo and Guo proposed a non-purposive
grouping scheme that merges small regions into larger mean-
ingful regions according to their features and geometric coher-
ency measures, including convexity, completion, symmetry, and
occlusion [10]. In [9], Fan et al. proposed a statistical model for
conceptualizing natural images based on concept sensitive salient
objects, which are defined as the dominant image components
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that are semantic to a human being and are also visually
distinguishable. In [11], Zhu provided a good review of statistical
modeling and the conceptualization of visual patterns.

Carson et al. [7] proposed the Blobworld system, in which a
user is required to select important regions and features. Wang
et al. [5] proposed an integrated matching algorithm to retrieve
images from picture libraries based on region similarity in terms
of a combination of color, shape, and texture information.
However, this approach does not provide a general way to
measure image similarity using spatial relationships in the region,
which are an important cue for middle level image understanding.
Hsieh and Grimson [8] proposed an image retrieval framework
using spatial templates for region matching. They support
matching one-to-many regions in two stages—a similarity
comparison followed by a region voting.

Pratikakis et al. [6] used the idea of measuring region
weighting, based on a hierarchical watershed driven algorithm
that automatically extracts meaningful regions. In this frame-
work, many-to-many region matching, along with region weight-
ing, is used to enhance feature discrimination. In the same spirit,
region weighing based on user relevance feedback is proposed in
several different region-based image retrieval systems [12,13].

A retrieval system that uses structural information extracted
by perceptual grouping has an edge over content-based image
retrieval systems that retrieve images containing structural
objects based purely on low level features. Various approaches
to grouping visual patterns extracted from image blocks, regions,
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Fig. 2. Object model selection: (a) the example image, (b) the selected
or objects have been proposed to offer a semantic-based
representation for image understanding and analysis applications
[4]. Grouping visual patterns into image models based on the GHT
is one of the most powerful techniques for image analysis [14,15].
However, real time applications using this method have not been
practical due to the computational intensity required for
similarity searching in a large centralized image collection. In
this work, we describe a fast CBIR implementation using region-
based GHT to retrieve visual objects under an affine transforma-
tion. In addition, content aware image segmentation is proposed
to synchronize the image segmentation of query and target
images.

This proposed approach has two phases. First, in the learning
phase, a training procedure which works as the core of the
proposed adaptive image segmentation identifies and stores
stable parameters for segmenting each database image. In the
retrieval phase, the proposed adaptive image segmentation
process segments a query image into regions for retrieving visual
objects inside database images. In addition, the region-based GHT
is used to locate the target object under the affine transformation.

Fig. 1 shows the block diagram of the proposed algorithm.
Although several methods have been proposed for detecting a
visually important object in an image, the results are not
satisfactory due to the shortage of image understanding models.
Instead of proposing an automatic visually important object
detector, the proposed visual object retrieval system provides a
query-by-example user interface that lets the web based end user
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crop a sample object from an image and submit it as a search
query. The user selects a thumbnail image to represent the full
image, and then uses the available selection tools to crop a
portion of the image as a sample query object, which can be
further scaled, translated, and rotated. The selected object is also
called a region-of-interest (ROI) in this work. Fig. 2 shows an
example image with a selected object. In this paper, we use
the region-based GHT for perceptually grouping segmented image
regions of the selected query object. A novel voting scheme for
the region-based GHT is proposed to provide an object search
method capable of finding a target object of arbitrary position,
orientation, and scaling.

The remainder of this paper is organized as follows. Section 2
presents the region-based GHT. Section 3 introduces the proposed
segmentation scheme. Section 4 introduces the object search
method. Section 5 shows the experimental results. The concluding
remarks are given in the last section.
2. Object search using region-based GHT

The GHT [14,15] represents an object with an R-table, which
establishes the relationships between every edge point of the
object and an object reference point. Based on this representation,
however, detecting an object of arbitrary position, orientation,
and scaling would give the GHT high computational complexity.
In addition, the voting result is generally inaccurate due to noisy
edge points and object occlusion. To resolve these two problems,
this work proposes a region-based technique for the GHT.

As shown in Fig. 3, a visual object (Fig. 3(a)) consisting of a
number of regions may undergo an affine transformation with
respect to a target image (Fig. 3(b)). Assume that there exists a
subset of regions that share the same affine transformation
mapping the visual object into the target image. As shown in
Fig. 3(c), the visual object can be described by the geometric
relationship between the object centroid XC and the centers of the
regions in the object. Given a region center X, the coordinates of X

and XC have the following relationship:

xC

yC

" #
¼

xþr cosa
yþr sina

" #
ð1Þ

where r denotes the Euclidean distance between X and XC, and a is
the angle between the line passing X and XC, and the x-axis. Note
that, if the value of a is determined, the coordinates of XR can be
determined from those of X using Eq. (1). Accordingly, the R-table
of the region-based GHT for representing a visual object can be
Fig. 3. Using region matching to estimate the affine transform parameters of an arbitrar

for generalized Hough transform.
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where ci, i¼1,y,k, denote colors for indexing these regions, and
|Ri

j| and fi
j denote the area and the orientation of the major axis

of the jth region of color ci, respectively. Other kinds of region
features may be included as well. The orientation of the major
axis of a region can be obtained from the central moments of the
region as

fA ¼
1

2
tan�1 2m1,1

m2,0�m0,2

ð3Þ

where ms,t is the (s+t)th central moment of the region [16]. The
edge points in a traditional R-table are indexed by the tangent
slopes of the edge points, whereas the regions in the proposed
R-table are indexed by the colors of the regions. Unlike the exact
matching of the original R-table indexing mechanism, a color
similarity between two colors is calculated for indexing the
proposed R-table.

Based on the user selected object template, we can segment
the template object into several regions, construct an R-table for
these regions, and perform the object search from the target
image using the region-based GHT with the constructed R-table.
Considering a region R of color c, which is a part of the target
object in the target image, the centroid candidates (xC, yC) of the
target object in the target image can be located on

xC

yC

" #
¼

xRþrðcÞs cosðaðcÞþtÞ
yRþrðcÞs sinðaðcÞþtÞ

" #
ð4Þ

where (xR,yR) are the coordinates of the center of R; r(c) and a(c)
return the r and a values corresponding to the entry of the R-table
of color c; s and t are the given scaling factor and rotation
angle, respectively. Then, votes are cast for the parameter vectors
(s, t, xC, and yC) in an s–t–x–y parameter space. In practice, all
possible values of s and t should be evaluated; however, it will be
shown later that the parameters s and t can be roughly estimated
from the square root of the area ratio and the angle difference
between the major axes of two regions, respectively. Furthermore,
a similarity measure (support) between a region of the target
image and a region of the template object, which will be defined
later, is also calculated. When the support value of a region of the
y object: (a) the visual object, (b) the target object, and (c) the region-based model
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target image with respect to a region of the template object is too
low, that region is not considered to have a vote. This can
dramatically reduce the number of spurious peaks in the resulting
parameter space. The details of the voting scheme will be
discussed later. After all regions of the target image have been
processed, the parameter vector in the 4D parameter space
getting a large number of votes describes an affine transformation
that makes the regions of the query object coincide significantly
with many of the target image regions. Then the problem of visual
object extraction is transformed into one of detecting the peaks in
the s–t–x–y parameter space.
3. Segmentation strategy for region-based GHT

The effectiveness of the region-based GHT for visual object
retrieval is strongly affected by the accuracy of image segmenta-
tion. A similar approach to grouping regions through the GHT for
visual object retrieval is found in the work of Chau and Siu [17],
which does not achieve good performance if the deficiencies of
automatic segmentation are ignored. Consider two images with a
common visual object—the segmented regions constituting the
visual object in the individual images might be different under
differing lighting conditions or when the object is geometrically
transformed. Obviously, the segmentation results vary, and
depend on the specific segmentation algorithm performed based
on the segmentation parameters. For example, for most existing
segmentation algorithms, we must determine a threshold to
merge two indistinguishably small regions into a larger region.
The problem is that it is very difficult to use a single threshold to
obtain a perfect segmentation result. The parameter setting is
obviously not trivial. Instead of dealing with the problem
separately, in this paper, we use a training mechanism to
adaptively select stable segmentation parameters for each image.
These stable parameters are defined as values that lead to the
same set of segmented regions for an image and its transformed
versions.

3.1. Problem definition

Given an image D, a set of regions from the initial segmenta-
tion using a parameter set L are obtained:

RL ¼ fRi : i¼ 1, . . . ,Ng, Ri ¼ ðFi,xi,yiÞ ð5Þ

where Ri \ Rj ¼f, 8ia j, i,j¼ 1,2, . . . ,N; Fi represents the pixel
values of region i; ðxi,yiÞ are the coordinates of the centroid of
region i. Let D̂ be the transformed version of D and segmented into
region set R̂L ¼ fRi : i¼ 1, . . . ,N̂g using L. Note that N does not
necessarily have the same value as N̂ because it is impossible to
determine a parameter set for a segmentation algorithm that is
resilient to any kind of transformation.

The stability of L can be defined by the conditional
probabilistic model:

PðR̂LjRLÞA ½0,1� ð6Þ

The problem of optimally determining the segmentation
parameters can be formulated as

L� ¼ arg max
L

p̂ðR̂LjRLÞ: ð7Þ

As mentioned above, the segmented regions are used for
matching. The stability of L can then be defined as the similarity
between D and D̂ in terms of region features. More specifically,
the conditional probabilistic model p̂ðR̂LjRLÞ can be estimated as

p̂ðR̂LjRLÞ ¼ 1�
jvðTÞ�minðN̂ ,NÞj

minðN̂ ,NÞ
ð8Þ
where N̂ðNÞ the number of regions in R̂ (R), and v(T) is the peak
of votes for mapping R̂ to R using the GHT, taking into account
the predefined geometric transformation parameterized by
T¼(s,t,x,y), which is given to transform D to D̂. The value of
ðp̂ðR̂LjRLÞÞ is close to one if the parameter space peak s–t–x–y is
significant, and close to zero if the transformed object difference
is large.

3.2. Watershed segmentation algorithm

This work uses a modified watershed segmentation algorithm
[18] to divide an image into multiple regions, because the
algorithm is very simple and involves only a single segmentation
parameter.

The watershed algorithm segments regions into catchment
basins based on the concept of watersheds in topography. A
catchment basin is the set of points constituting the local
minimum of a height function that is often defined as the
gradient magnitude of the image. More specifically, image data
may be interpreted as a topographic surface, with the pixel values
representing altitude. Thus, region edges correspond to high
watersheds and low gradient region interiors correspond to
catchment basins. After locating these minima, the surrounding
regions are incrementally flooded to form boundaries of the
regions where flooded regions touch. One disadvantage of the
process is that it leads to a severely over segmented image, with
hundreds or thousands of catchment basins. Marker controlled
segmentation and other approaches have been suggested to
generate good segmentation. In a marker controlled segmentation
approach, markers constrain the flooding process inside their own
catchment basins; therefore, the final number of regions is equal
to the number of markers.

Developing the watershed segmentation algorithm based on
the concept of watersheds and catchment basins is complex, with
many of the early methods resulting in either slow or inaccurate
execution. In addition, merging regions based on region markers
or other approaches can result in instable segmentation, as shown
in Fig. 4. Furthermore, it is difficult to determine the appropriate
number of markers for merging regions without any prior
knowledge. In practice, we do not involve region merging to
obtain relatively stable segmentation results for region-based
matching.

In this paper, we introduce a threshold value Tl and a simple
region growing process to generate initial catchment basins.
Given input image I, the gradients of I are obtained with a
Gaussian filter and computing partial derivations with respect to x

and y on its pixels [18]. Let gxy be the magnitude of the gradient of
the pixel at location (x,y). I is converted to a binary image B by

bxy ¼
0 if gxyrTl

1 otherwise

�
ð9Þ

where bxy is the value of the pixel at location (x, y) in B. Then, the
regions that consist of continuous pixels in B with the same value
0 are grown together to form the initial catchment basins of I.
Finally, after locating these minima, the surrounding regions are
incrementally flooded to form boundaries of the regions where
flood regions touch. For the sake of illustration, the watershed
segmentation algorithm is summarized as follows.

Algorithm 1. The Watershed Segmentation

Input: Image I.

Output: A set of segmented regions of I.

Method:
(1)
 Filter with a Gaussian filter with a standard deviation of sG on I.
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Fig. 4. The problem of instability in merging regions over segmented by the

watershed segmentation algorithm: (a) the original image, (b) the transformed

image of (a), (c) the segmentation result of (a), (d) the segmentation results of (b),

(e) the result of merging small regions in (c) with their adjacent regions, and (f) the

result of merging small regions in (d) with their adjacent regions.
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(2)
 For each pixel I(x, y), compute partial derivations px ¼ @I=@x

and py ¼ @I=@y with respect to x and y, respectively, using the
following two masks:

�1 0 1 1 1 1

�1 0 1 0 0 0

�1 0 1 �1 �1 �1

ð10Þ

For each pixel I(x, y), compute the magnitude of its gradient
(3)

from the partial derivatives:

g2
xy ¼ p2

xþp2
y ð11Þ

Set the gradient threshold Tl and convert I into a binary image
(4)

B using Eq. (9).
(5)
 Perform a simple region growing process on B to create a set
of initial catchment basins for I.
(6)
 Set k¼Tl+1.

(7)
 Repeat until all pixels in I are labeled:

(7.1) For each catchment basin Li, compute its geodesic
influence zone, which is defined as the locus of non-
labeled image pixels of gradient magnitude k that are
contiguous with the catchment basin Li, for which the
distance to Li is smaller than the distance to any other
catchment basin Lj. Label all pixels belonging to the
catchment basin Li influence zone Li.

(7.2) k¼k+1.
Fig. 5 shows an example of watershed segmentation. Note that
the value of threshold parameter Tl in Eq. (9) affects the final
segmentation result of the algorithm—a larger Tl produces fewer
segmented regions.
3.3. The adaptive image segmentation with a training procedure

Determining the optimal segmentation parameters for all
affine transformation parameters is computationally complex.
As mentioned above, segmentation results from watershed
segmentation strongly depends on the gradient magnitude of
the input image. Looking at the watershed segmentation
presented in Algorithm 1, it is interesting to find that Steps 1–4
implement a simplified version of Canny’s edge detector [19] and
the binary image B defined by Eq. (9) is the edge map of I. The
candidate boundaries of seamless regions consist of edges in B.
The choice of Tl is important for boundary detection. Too low a
threshold produces too many false edges, which would lead to an
over segmented result from the watershed segmentation. On the
other hand, too high a threshold would throw away too many true
edges and result in under segmentation. To quantify this tradeoff,
the noise behavior of the segmentation algorithm should be
analyzed in detail.

Any affine transformation on an input image produces noise in
the segmentation results of the watershed algorithm. However, it is
difficult to eliminate every kind of noise through a training process
that determines a robust threshold for segmenting a specific image.
Without a loss of generality, we assume that the noise at each image
pixel is stationary, white (independent), Gaussian noise N(x, y) with
a mean¼0 and variance ¼sn

2. Following the edge detection analysis
presented by Lee and Cok [20], the noise behavior of watershed
segmentation is discussed as below.

The partial derivatives px ¼ @I=@x and py ¼ @I=@y, obtained from
Step 2 of Algorithm 1, can be shown to be independent, and their
variances are given by [20]

s2
d ¼ s

2
Px
¼ s2

Py
�

s2
n

4ps2
G

ð6þ8c�2c4�8c5�4c8Þ ð12Þ

where c¼ exp½�1=ð4s2
GÞ�. When sG is large, c� 1�1=ð4s2

GÞ, and

s2
d ¼ s

2
Px
¼ s2

Py
�

2snffiffiffi
2
p

ps2
G:

ð13Þ

According to Eq. (13), the noise standard deviations of the

partial derivatives are reduced approximately by a factor of s2
G

when we smooth an input image with a Gaussian filter of size sG.

The distribution of the gradient magnitude g2
xy, defined by Eq. (11)

is a w2 distribution, if px and py are Gaussian random variables.
According to Lee and Cok [20], some interesting statistical

characteristics of the distribution of g2
xy can be found: (1) the

peak occurs at g2
xy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�1
p

s2
d; (2) the mean is 2ms2

d; and, (3) the

variance is 4ms4
d , where m¼1 for grey level images and m¼3 for

color images. Also,

Tl ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�1
p

sd ð14Þ

was suggested to obtain reasonable boundary points [20].
Although Eq. (14) provides a good initial guess for the value of

the threshold Tl, Tl should be fine tuned by the proposed training
procedure since the noise model of an input image might not be



ARTICLE IN PRESS

Fig. 5. A segmentation example: (a) the original image, (b)–(d) are the segmentation results of (a) using the threshold parameters 20, 45, and 115, respectively.
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exactly Gaussian. Let ~D be the transformed version of a database
image D using affine transformation A, which is known in advance
in the training phase. The difference image C, between ~D and D,
can be computed as

C ¼D�A�1 ~D ð15Þ

Actually, C is the noise image produced by A. The estimated
noise variance is then easy to compute as

s2
n ¼

1

NxNy

XNx

x ¼ 1

XNy

y ¼ 1

ðnxy�nÞ2, n ¼
1

NxNy

XNx

x ¼ 1

XNy

y ¼ 1

nxy ð16Þ

where nxy is the pixel value at the location (x, y) of C. Based on
Eq. (16), we can estimate the value of sd and the initial threshold
Tl

(0)using Eqs. (13) and (14), respectively. Finally, we search the
best threshold from the interval [Tl

(0)
�asd, Tl

(0)+asd] using
the criterion function defined in Eq. (8). In practice, we set
sG¼4 and a¼0.5.

The training procedure presented so far cannot make sure to
be affine invariant. Matas et al. [21] proposed an interesting
approach to achieve the goal of affine invariant by regulating the
most robust image level sets and level lines. The method
normalizes all of the six parameters in the affine transform.
Following the concept of extreme regions in [21], the proposed
training procedure is dedicated to find the segmentation para-
meter Tl which generates the maximally stable extreme regions
(MSERs) for an input image. MSERs are defined as maximally
contrasted regions in the following way. Let R1, y, Ri–1, Ri, y. be a
sequence of nested extreme regions RiCRi +1, where Ri is defined
by a threshold at level i. Based on the area variation, in [21], an
extreme region in the list Ri� is said to be maximally stable if
Ri� ¼ arg minijRiþ1\Ri�1j=jRij, where |R| is the area of a region R. As
mentioned above, the segmentation results highly affect the
retrieval accuracy for a specific similarity measure. Thus, in this
work, the definition of MSERs is reformulated as follows.

Ri� ¼ argmax
i
½2p̂ðRijRi�1Þ�p̂ðRi�1jRi�2Þ�p̂ðRiþ1jRiÞ� ð17Þ

where p̂ðRijRi�1Þ is the conditional probability defined in (8) to
measure the similarity between MSERs at levels i and i�1.
The following algorithm summarizes the training procedure
for determining a relatively stable threshold Tl for image
segmentation.

Algorithm 2. The adaptive image segmentation.

Input: An image D and its transformed version ~D using affine

transformation A.

Output: The threshold Tl for segmenting D and the MSERs.

Method:
(1)
 Compute the noise image C using Eq. (15).

(2)
 Compute the noise variance sn using Eq. (16).

(3)
 Compute the estimate of sd using Eq. (13).

(4)
 Determine the initial threshold Tl

(0) using Eq. (14).

(5)
 Set Tl

(1)
¼Tl

(0)
�asd, i¼1, and pn

¼0.

(6)
 while (Tl

(i)Tl
(0)+sd)do

(6.1) Perform the watershed segmentation to generate region
sets Ri for D using the threshold parameter Tl

(i).
(6.2) Compute the value of p̂ðRijRi�1Þ (Ri|Ri�1) using Eq. (8).
(6.3) Tl

(k +1)
¼Tl

(k)+DT, k¼k+1.

(7)
 Perform affine normalization to obtain MSERs Ri� and

Tl
n
¼Tl

(k) using (17).
To speed up the segmentation algorithm in finding out the

MSERs, an incremental segmentation algorithm which is slightly

different than the proposed watershed segmentation algorithm is

presented. Basically, the watershed segmentation consists of four

parts: computation of the gradients (Steps 1–3); generating the

edge map (Step 4); growing the initial catchment basins (Step 5);

and the water flooding process (Steps 6 and 7). Considering two

thresholds parameters Tl and T
0

l ðTloT
0

l Þ for consecutive segmen-

tation of a query image, we find that: (1) the gradients are the

same, (2) the edge maps for case lcan be derived from those of Tl,

and, (3) the initial catchment basins in case T
0

l can be derived from

for case Tl. Adding suitable memorization functions to these parts

of the watershed segmentation can dramatically reduce the
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Fig. 6. An example of incremental image segmentation: (a) the original image; (b) and (c) are edge maps of (a) using the thresholds 80 and 150, respectively; (d) is the

difference between (b) and (c); (e) and (f) are the segmented regions of (a) using the thresholds 80 and 150, respectively; and (g) is the difference between (e) and (f).
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segmentation complexity required to answer a query. The first

three parts of the segmentation algorithm are time consuming

compared with the final water flooding process. Fig. 6 shows an

example of incremental image segmentation, which demonstrates

the high correlation between two segmented results using

different threshold parameters.
4. The object search method

4.1. Model selection and object matching

Our object retrieval system provides a query-by-example end
user interface that allows a user on the web to crop a sample
object from an image and submit it as a search query. The user
selects a thumbnail image of the full image, and then uses the
available selection tools to crop out a portion of the image as
the sample query object, which can be further scaled, translated,
and rotated.

The user selected object image is represented by an R-table
using Eq. (2) and sent to the server for matching against the
database images. The R-table of the submitted model object
is considered an appropriate structure for the object—image
structures must be found according to the region information
in the R-table. For each region in the R-table, we need to search
for possible matches from the target image by recovering
2D rigid object translation, scale, and rotation. The sequence
of steps for object matching is shown in Fig. 7: (a) user model
selection, (b) image segmentation and region parameters
computing, (c) R-table construction, (d) region matching and
testing, (e) object centroid determination, and scaling factor
and rotation angle calculation, (f) voting on the s–t–x–y space,
and (g) peak detection and parameter verification. One advantage
of the proposed method is that the small number of image
segments results in a fast object search process.
4.2. Parameter computation for geometric transformation by voting

To increase the robustness of the estimation process, as well as
to reduce computation time, the transformation parameter vector
V(s, t, x, y) between two similar images can be obtained through
the following process. Assume that the R and R0 are corresponding
regions from two different images; the scaling factor s is
determined by the square root of the ratio of area R0 to area R:

s¼

ffiffiffiffiffiffiffi
jR0 j

jRj

s
ð18Þ

To find the rotation angle t, we can use the degree of
misalignment between the major axes of R and R0:

t¼fR0�fR ð19Þ

where fR0 and fR are the orientations of the major axes of R0 and
R, respectively. Given a region, the direction of the major axis can
be obtained by Eq. (3). Furthermore, for each point u¼(x, y) in R,
one can find the corresponding point u

0

¼ ðx
0

,y
0

Þ in R0, such that

x
0

�x0

y
0

�y0

 !
¼ s

cos t sin t
�sin t cost

� �
x�x

y�y

 !
ð20Þ

where ðx0 ,y0 Þ and ðx,yÞ are the centroids of R0 and R, respectively.
Given a region match pair (R, R0), we compute the support

value for the match pair in the RGB color space as

hðR,R
0

Þ ¼
2

1þexpr�eðR,R0 Þ
ð21Þ

where parameter r controls the speed at which the support h

achieves one of its two extremes (0 and 1) according to the value
of e(R,R0), which is computed from

eðR,R
0

Þ ¼
X
ðx,yÞAR

jj~cRðx,yÞ�~cR0 ðx
0

,y
0

Þjj ð22Þ

where the relationship between ðx
0

,y
0

Þ and ðx,yÞ is defined in
Eq. (20), ~cRðx,yÞ and ~cR0 ðx

0

,y
0

Þ are the color vectors of the pixel
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User Object Model Selection

R-table construction

Segmentation & Compute regions features

Perform region matching to find region matches from the target image

Extract a region from the R-table

Is every region in the R-table checked?

Object centroid determination and scaling factor and rotation angle calculation

Voting on                              space yxs −−− �

Peak detection and parameters verification 

Matches 

Yes

No

Fig. 7. A flowchart of object matching.
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at (x, y) in R and the pixel at (x0, y0) in R0, respectively, and J.J is the
Euclidean distance. The value of h is about 1 if e(R, R0) nears zero;
h is about 0 if the difference between R and R0 is large. The value of
r is set to 0.01 in this study. Once the value of h(R,R0) is larger than
a pre-defined threshold (i.e., 0.5), the region match pair (R,R0) has
a vote for a point in the s–t–x–y parameter space as follows:

þþðs,t,xref ,yref Þ ð23Þ

where (xref, yref) is computed using Eq. (4) and (s, t, xref, yref) is a
point in the 4D parameter space. On the other hand, a small
h(R,R0) indicates that the region match pair (R,R0) is not good
enough to be included in the voting process.

The time to locate the peak corresponding to the query object
in the s–t–x–y parameter space can be reduced by first
approximating sn, tn, xn and yn and then refining the search in a
small area. The approximating values of sn, tn, xn, and yn can be
determined by the procedure described below. Multiple peaks can
be selected to detect the visual object with multiple geometric
transformations, where each characterizes a region grouping
(sub-object) of the visual object. The proposed region matching
for voting is summarized as

Algorithm 3. Approximating geometric transformation para-
meter estimation (AGTPE).

Input: A selected query object Q, which is partitioned into a set

of regions, and an R-table constructed for those regions; a

database image D, which is partitioned into a set of regions

R
0

j, j¼ 1 . . .m.

Output: The approximating values of geometric transformation

parameters sn, tn, xn, and yn.

Method:

/n s-hist[]: accumulated scores of the scaling factors n/
/n t-hist[]: accumulated scores of the rotation angles n/
/n H-hist[]:accumulated scores of the xy-plane n/
for j¼1 to m do /n check every region in the target image n/
use the average color of region R’j to index the R-table, and
let regions Ri, i¼1yn, be the regions in the retrieved entry
of the R-table.
for i¼1 to n do /n check every region in Q n/
calculate geometric transformation parameters between Ri

and R0j using Eqs. (18) and (19);
calculate the center coordinates (xi,yiÞ and ðx0 ,y0 Þ of Ri and
R0j, respectively;
calculate the support value h(R,R0) using Eq. (21);
if ðh0ðR;R0Þ4uÞ/n u: a pre-defined threshold n/
calculate the object reference point (x, y) using Eq. (4);
t is quantized to an approximate value, ~t;
s is quantized to an approximate value, ~s;
t-hist½ ~t�þ þ;
s-hist½~s�þ þ;
H-hist[x][y]+ +;
set the approximating values of geometric transformation
parameters sn, tn, xn, and yn by detecting the peaks in the
accumulation arrays s-hist[], t-hist[], and H-hist[], respec-
tively.

Note that, in this approach, the translation and rotation terms

are detected separately, thus, reducing the computational cost of

the GHT with respect to the 4D parameter space. The time

complexity of the proposed algorithm is O(4 mn). In general, since

most areas in an image are uniform and the number of segmented

regions is not large, the execution speed of the proposed approach

is fast.
4.3. Geometric transformation parameter verification

After performing the proposed AGTPE method, we know the
approximating values of the geometric transformation para-
meters s, t, x, and y, and can apply them to mapping visual object
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in the selected model to the corresponding object in the target
image. Let L¼ ðs,t,x,yÞ denote the parameter set of the geometric
transformation corresponding to the peak in the s–t–x–y space.
Applying the geometric transformation with parameters L to the
query object Oq determines the corresponding visual object Ot in
target image. Then, the similarity between Oq and Ot, based on the
histogram intersection measure [7], is computed:

SðLÞ ¼
Pn

j ¼ 1 minðHðOq,jÞ,HðOt ,jÞÞðsÞ
2Pn

j ¼ 1 HðOq,jÞðsÞ2
ð24Þ

where H(Oq) and H(Ot) denote the color histogram of Oq and Ot,
respectively, and n is the number of bins in the histograms.

We can construct a small search window in the parameter
space with the parameter set L�ðs�,t�,x�,y�Þ as its center; then
we can check the parameter sets one by one within the search
window using the same parameter verification process to find the
best parameters nearing Ln. Although this process introduces
additional time to fine tune the geometric transformation
parameters, our experimental results show that it significantly
improves the retrieval accuracy.

Once we have the verified parameters, the image is reported as
a match and its object match measure S is also returned, if S is
large enough. After obtaining match measures for all images in
the database, the measures are sorted in descending order. The
number of matches can further be restricted to the top k if
necessary.
5. Experimental results

The proposed system was implemented on an AMD Athlon
64 3000+ PC with 512 MB memory. Three test databases were
used to demonstrate the performance of the proposed system.
First, an artificially created database containing 600 color images
of six types was constructed to test the robustness of the system.
A retrieval example based on the test database is shown in Fig. 8.
Fig. 9 shows the second database, consisting of 5000 color images,
Fig. 8. Retrieval results of the sy
each of which contains a meaningful visual object sorted in
25 classes. The third database consists of 20,000 color scenery
images sorted into one hundred classes, which are from
Corel’s CorelPhoto image collections. Each database image is
384�256. Query images of different sizes were extracted from
these images.

A retrieval method is classified as accurate if, for a given query
image, the perceptually (to a human) most similar image in the
database is retrieved as the top selection. Also, a robust system
should be stable for all types of queries, i.e., the system must not
break down under specific samples. To test the robustness of the
proposed system, normal query images were supplemented with
translated, rotated, scaled, and noise added query images to test
the system.

Six types of query images are presented below.
�

stem
Normal: Every image in the database was presented as the
query image.

�
 Translating: The object in every database image was translated

and then presented as the query image.

�
 Cropping: The object in every database image was selected and

then presented as the query image.

�
 Rotating: Every image in the database was rotated arbitrarily

and then presented as the query image.

�
 Scaling: Every image in the database was scaled and presented

as the query image.

�
 Noise added testing: Zero-mean normal noises of 10, 15, and

20 db were added to every image in the database and
presented as the query image.
The region-based retrieval technique proposed by Chau and
Siu [17] (CGHT for short) was also implemented for performance
comparison. Table 1 presents the results of the proposed method
and Chau’s method tested against 100 color images, where
n refers to the position of the correct retrieval. The proposed
method was superior in the presence of the geometric
using test database 1.
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Fig. 9. Samples of test database 2 with image types: (a) juice box, (b) juice box 2, (c) Kuai-Kuai, and (d) taxi.

Table 1
Image retrieval results for the simulated methods based on test database 1: n refers to the position of the correct retrieval; the last column indicates the average retrieval

time.

Test mode Method n¼1 (%) nr3 (%) nr5 (%) nr20 (%) Average retrieval time (s)

Normal Chau 91 91 92 92 5.3

Proposed 100 100 100 100 0.115

Scaling Chau 6 7 8 11 5.3

Proposed 100 100 100 100 0.115

Cropping 10% Chau 91 91 91 92 5.3

Proposed 98 100 100 100 0.115

Rotation Chau 23 25 25 26 5.3

Proposed 95 97 97 98 0.115

Translation Chau 100 100 100 100 5.3

Proposed 100 100 100 100 0.115

Noise-adding (20 db) Chau 100 100 100 100 5.3

Proposed 100 100 100 100 0.115

Noise-adding (15 db) Chau 91 91 92 92 5.3

Proposed 100 100 100 100 0.115

Noise-adding (10 db) Chau 76 77 77 79 5.3

Proposed 91 92 92 95 0.115
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transformation. For the six types of query image, the proposed
method seems more sensitive to rotated images than to scaled or
translated images. The worst case retrieval accuracy of the system
was 91%, which is much better than that of Chau’s method, and
the average retrieval time of the proposed method is much
shorter.
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Fig. 10. Average precision-recall plots for the four test cases.

Fig. 11. Precision versus recall of queries using Corel’s image collection.
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We also evaluated our algorithm by calculating the precision
and recall for visual object retrieval. Given ground truth labeling
and predicted labeling of the visual objects obtained by annotating
the visual objects in the query images using region-based image
retrieval, let ntp, nt, and nr be the number of true positives (correctly
annotated objects), the number of true visual objects in the
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Fig. 12. Samples of Corel data images with image types: (a) Class-616 and (b) Class-578.
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database, and the number of retrievals, respectively. Recall is
defined as ntp=nt , meaning the proportion of true labels annotated
by the algorithm. Precision is defined as ntp=nr , meaning the
proportion of retrievals that are true. By varying nr, we can vary
the tradeoff between precision and recall. To summarize the
precision-recall curve in one number, we can use the F-measure,
which is the geometric mean [22]:

F ¼ 2�
precision� recall

precisionþrecall
ð25Þ
Recall and precision require a ground truth to assess the
relevance of images for a set of significant queries. For each query
image, we defined the relevant images based on human assess-
ment, using test database 2. Fig. 9 shows a sample of test images.
We compared the retrieval performance of the proposed method
to Chau’s method [17]. The average precision and recall curves are
plotted in Fig. 10.

Finally, we used the Corel database to test our system, as
shown in Fig. 11. The figures show that the proposed method
achieves good results in terms of its retrieval accuracy compared
to Chau’s method [17]. However, including the proposed method,
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Fig. 13. An example of precision-recall test based on the Corel database using the

(a) proposed method and (b) CGHT.

Fig. 14. Average F-measure ve
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region-based approaches to image matching in general suffer
from bad performance when the image is feature sparsity [23].
Because there are few highly contracted level sets in the Corel
data images (cf. Fig. 12), in Fig. 11, several of the figures
evaluating precision and recall obtain very poor values for
precision—this is the limit of shape-color based retrieval
systems. However, in class 616 and 624, although they do not
have the same object shape, the color characteristics are similar,
and our system seems to work. Fig. 13 shows an example of
precision-recall test using the Corel database. As shown in Fig. 14,
to summarize the accuracy results over many samples, we also
compared the performance of the simulated methods using the
F-measure defined in Eq. (25). Accordingly, the proposed method
outperforms Chau’s method.
6. Conclusions

This paper presented an object search method using the GHT
based on content aware image segmentation. By incorporating the
proposed scheme for learning segmentation parameters, the
adaptive image segmentation is used to segment maximally
stable extreme regions from database and query images. This
improves the retrieval effectiveness of the region-based GHT. In
other words, the proposed method does not suffer from the
problems of object segmentation in conventional object search
approaches. The fusion of image segmentation and matching
functions stabilizes the segmentation results for region-based
image retrieval. Furthermore, the proposed method, using the
region-based GHT to find the correct geometric transformation
parameters in object searches, does not have the computational
complexity of the traditional GHT.

The system retrieval speed is enhanced without affecting its
robustness by advance sorting of database images in terms of
segmentation parameters for the proposed incremental query
segmentation scheme. Future work will deal with linking semantic
interpretations into regions and increasing the database size.
rsus number of retrievals.
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