Efficient and scalable cross-matching of (very) large catalogues

François-Xavier Pineau¹, Thomas Boch¹ and Sebastien Derrière¹

¹CDS, Observatoire Astronomique de Strasbourg

ADASS Boston, 08 November 2010

1 / 16

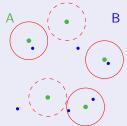
CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues :

Algorithms :

Particularity: deal with (very) large catalogues

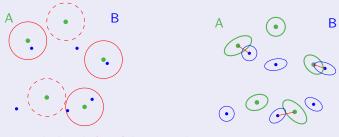
ATELOGOGOGO DE STRUBOUR


CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues :

Algorithms :

Particularity: deal with (very) large catalogues

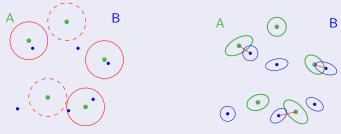

ATEROORGES SESTIMATES

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues :

Algorithms :

• Particularity: deal with (very) large catalogues



CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues :

Algorithms :

Particularity: deal with (very) large catalogues

2 / 16

Dealing with (very) large catalogues

Example

- 2MASS
 - $\sim 470 \times 10^6$ sources
 - imes minimal data \sim 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B+8 B)
 - * errors (float 4 B+4 B+4 B)
- USNO-B1
 - $\sim 10^9$ sources
 - \sim minimal data \sim 28 GB
 - identifier (integer 4 B)
 - positions (double 8 B+8 B)
 - * errors (float 4 B+4 B)
- LSST projection at 5 years:
 - V>26, \sim 3×10 9 unique sources
 - minimal data \sim 96 GB

Problems

- Data size
 - do not fit into memory
- Performance issues
 - data loading
 - looking for candidates

Solutions

- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing

Dealing with (very) large catalogues

Example

- 2MASS
 - $\sim 470 \times 10^6$ sources
 - imes minimal data \sim 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B+8 B)
 - * errors (float 4 B+4 B+4 B)
- USNO-B1
 - $\sim 10^9$ sources
 - \sim minimal data \sim 28 GB
 - identifier (integer 4 B)
 - * positions (double 8 B+8 B)
 - errors (float 4 B+4 B)
- LSST projection at 5 years:
 - V>26, \sim 3×10 9 unique sources
 - minimal data ~ 96 GB

Problems

- Data size
 - do not fit into memory
- Performance issues
 - data loading
 - looking for candidates

Solutions

- Scalability: Healpix partitioning
- Efficiency
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing

Dealing with (very) large catalogues

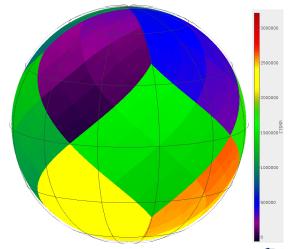
Example

- 2MASS
 - $\sim 470 \mathrm{x} 10^6 \mathrm{\ sources}$
 - \sim minimal data \sim 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B+8 B)
 - * errors (float 4 B+4 B+4 B)
- USNO-B1
 - $\sim 10^9$ sources
 - \sim minimal data \sim 28 GB
 - identifier (integer 4 B)
 - * positions (double 8 B+8 B)
 - * errors (float 4 B+4 B)
- LSST projection at 5 years:
 - V>26, $\sim 3 \times 10^9$ unique sources
 - minimal data ~ 96 GB

Problems

- Data size
 - do not fit into memory
- Performance issues
 - data loading
 - looking for candidates

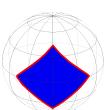
Solutions


- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing

Healpix

- Hierarchical sky pixelisation
 - ▶ level 0 \leadsto 12 pixels
 - ▶ level 1 → 12x4 pixels
 - •
 - ▶ level $n \rightsquigarrow 12 \times 2^{2n}$
- Pixels of equal area
- Developed at NASA: healpix.jpl.nasa.gov
- Available in
 - ► C. C++
 - Fortran
 - ► IDI
 - Java
 - **.**...?

08/11/2010


- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a kd-tree
- Optimal partitioning level
 - available memory
 - ▶ minimisation of:

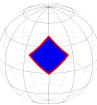
$$\sum_{i=0}^{nPixels} N_{A_i} \log(1+N_{B_i}+N_{B_i}^b)$$

▶ I/O cost

Level 0

Level 1


Level 0


- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a kd-tree
- Optimal partitioning level
 - available memory
 - minimisation of:

$$\sum_{i=0}^{n \text{rickels}} N_{A_i} \log(1 + N_{B_i}) + N_{B_i}^b$$

▶ I/O cost

Single machine

- All sky correlation (small catalogues)
 allow "on the fly" correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS³ (few machines)Hadoop (large grid)
- "On the fly" correlation possible

Single machine

- All sky correlation (small catalogues)
 allow "on the fly" correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework
 - based on UWS^a (few machines)Hadoop (large grid)
- "On the fly" correlation possible

Single machine

- All sky correlation (small catalogues)
 allow "on the fly" correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework
 - based on UWS^a (few machines)Hadoop (large grid)
- "On the fly" correlation possible

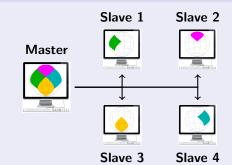
Single machine

- All sky correlation (small catalogues)
 - ▶ allow "on the fly" correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework
 - based on UWS^a (few machines)
 - Hadoop (large grid)
- "On the fly" correlation possible

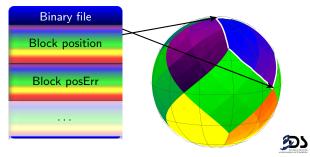
^aUniversal Worker Service (IVOA)


Single machine

- All sky correlation (small catalogues)
 - allow "on the fly" correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS^a (few machines)
 - Hadoop (large grid)
- "On the fly" correlation possible


Loading data: indexed binary files

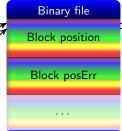
Index files

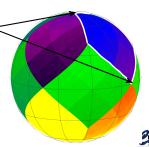
- One by healpix level
- For each pixeloffsetnSources

Binary data file

- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - · ...
- Sources ordered by healpix pixel index

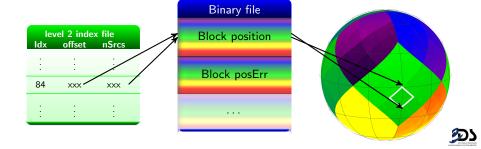
Loading data: indexed binary files


Index files


- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file

- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - **...**
- Sources ordered by healpix pixel index


Loading data: indexed binary files

Index files

- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file

- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - **.**..
- Sources ordered by healpix pixel index

4日 > 4回 > 4 至 > 4 至 >

kd-tree

What is a kd-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - ▶ nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- ullet We want a memory efficient kd-tree (capacity > 1 billion sources)

Solution

To use a single array (sorted using a kd-tree scheme)

8 / 16

kd-tree

What is a kd-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - ▶ nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- ullet We want a memory efficient kd-tree (capacity > 1 billion sources)

Solution

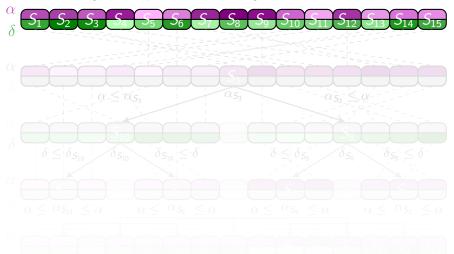
• To use a single array (sorted using a kd-tree scheme)

kd-tree

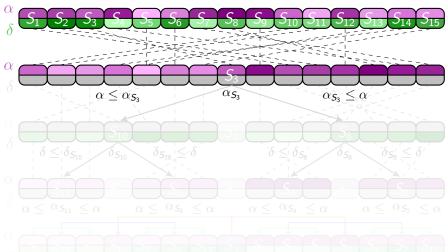
What is a kd-Tree?

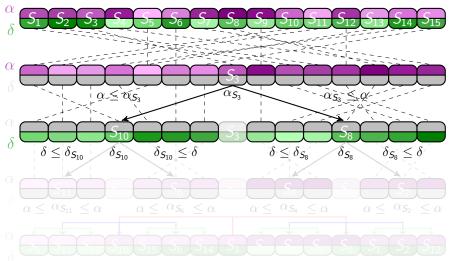
- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - ▶ nearest neighbour query in $O(\log(n))$

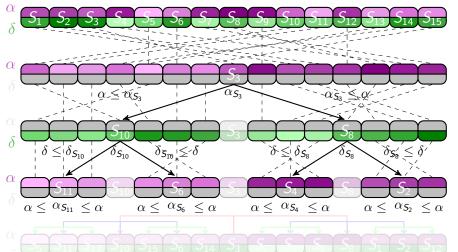
Problem

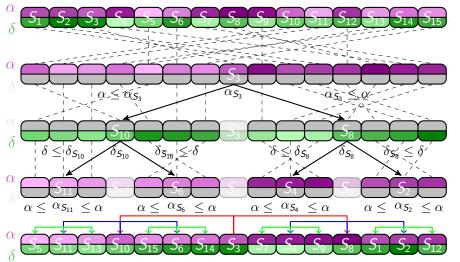

- Naive implementation can be memory consuming
- We want a memory efficient kd-tree (capacity > 1 billion sources)

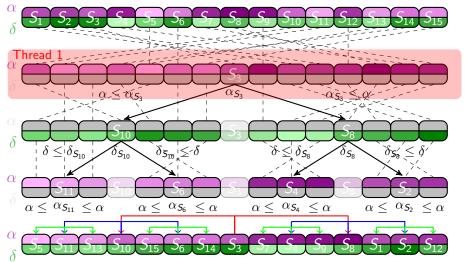
Solution

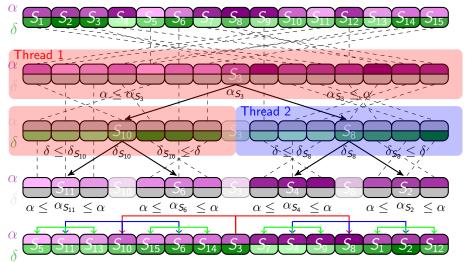

• To use a single array (sorted using a kd-tree scheme)

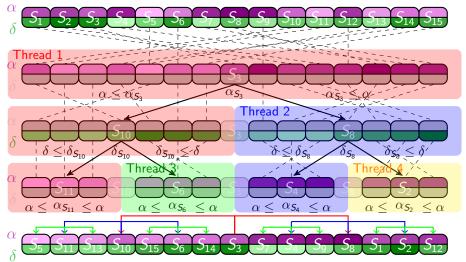











Creation speed up by using multi-threading

Creation speed up by using multi-threading

Creation speed up by using multi-threading

Modified kd-tree and multithreading

Modified kd-tree

- Classical kd-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - \triangleright cartesian coordinates (x, y, z)
 - ★ → time consuming (conversion)
 - ★ → memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates (α, δ)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single kNN or cone search query not multithread
- Pool of threads executing multiple queries simultaneously

Modified kd-tree and multithreading

Modified kd-tree

- Classical kd-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - \triangleright cartesian coordinates (x, y, z)
 - ★ → time consuming (conversion)
 - ★ → memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates (\alpha, \delta)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single kNN or cone search query not multithread
- Pool of threads executing multiple queries simultaneously

Modified kd-tree and multithreading

Modified kd-tree

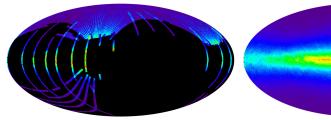
- Classical kd-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - \triangleright cartesian coordinates (x, y, z)

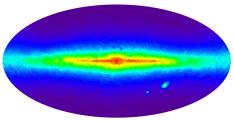
 - * → memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates (α, δ)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single kNN or cone search query not multithread
- Pool of threads executing multiple queries simultaneously

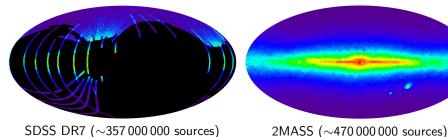
Test Machine


- Dell machine 2600€(~\$3600):
 - ▶ 24 GB of **1333 MHz** memory
 - 2x Quad Core 2.27 GHz (Xeon)
 - ▶ 16 threads (Hyper-Threading)
 - ► High speed HDD (10 000 rpm)


Full catalogue cross-correlation

SDSS DR7 (~357 000 000 sources)

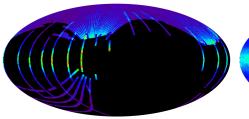
- ► radius of 5′
- ► Healpix level 3 (\sim 7.3°)
- ► Level 9 borders (~7')
- \sim 49 209 000 associations



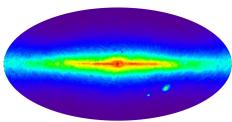
2MASS (~470 000 000 sources)

- With elliptical errors: ~10 min
 - ▶ distance of 3.44*a*
 - distance max of 5
 - ► Healpix level 3
 - \sim 37 507 000 associations

Full catalogue cross-correlation


- SDSS DR7 (~357 000 000 sources)
- Simple cross-match: ~9 min
 - ▶ radius of 5"
 - ▶ Healpix level 3 (~7.3°)
 - ► Level 9 borders (~7')
 - \sim 49 209 000 associations

- With elliptical errors: ~10 min



Full catalogue cross-correlation

SDSS DR7 (~357 000 000 sources)

- Simple cross-match: ∼9 min
 - ▶ radius of 5"
 - ▶ Healpix level 3 (~7.3°)
 - ► Level 9 borders (~7')
 - \sim 49 209 000 associations

2MASS (~470 000 000 sources)

- With elliptical errors: ~10 min
 - distance of 3.44σ
 - distance max of 5"
 - Healpix level 3
 - \sim 37 507 000 associations

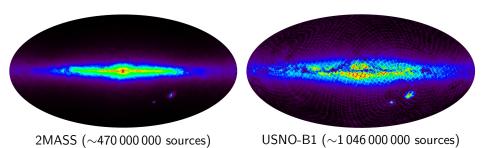
Lessons learned

Hardware

For our application:

- RAM frequency does matter (lots of memory access)
- Hyper-Threading **does** matter (on 8 cores, 16 threads \sim 2x faster than 8 threads)

Software: don't have a priori


- Efficient full Java code
- Efficient modified kd-trees (in our case)

Service

- Existing and future (very) large catalogues can be processed
- Bottleneck is data transfer (without surprise)
 - service colocated with data

Full all-sky catalogues cross-correlation

- Simple cross-match: ∼30 min
 - ▶ radius of 5"
 - ► Healpix level 3
 - Level 9 borders
 - ► ~583 300 000 associations

Basic likelihood ratio (LR)

Ratio between:

• Rayleigh distribution

$$LR = \frac{r \exp(-\frac{1}{2}r^2)}{2\lambda r} = \frac{\exp(-\frac{1}{2}r^2)}{2\lambda}$$

Poissonian distribution

Depends on:

- r = normalized distance in σ
- $\lambda \propto$ local density of sources

- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (k=100)

Basic likelihood ratio (LR)

Ratio between:

Rayleigh distribution

$$LR = \frac{r \exp\left(-\frac{1}{2}r^2\right)}{2\lambda r} = \frac{\exp\left(-\frac{1}{2}r^2\right)}{2\lambda}$$

Poissonian distribution

Depends on:

- r = normalized distance in σ
- $oldsymbol{\circ}$ $\lambda \propto$ local density of sources

- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (k=100)

Basic likelihood ratio (LR)

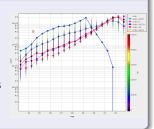
Ratio between:

Rayleigh distribution

$$LR = \frac{r \exp\left(-\frac{1}{2}r^2\right)}{2\lambda r} = \frac{\exp\left(-\frac{1}{2}r^2\right)}{2\lambda}$$

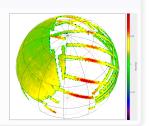
Poissonian distribution

Depends on:


- r = normalized distance in σ
- $\lambda \propto$ local density of sources

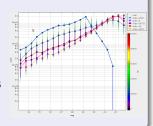
- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (k=100)
- → 15min

Going further...


Magnitude-dependent LRs (fast solution)

- kNN averaging ✓
- log N-log S law -
- SDSS7, level 6 ($\sim 1^{\circ}$), 15 187 non empty histograms computed in 30s.

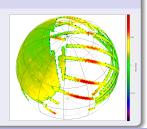
Probability of identifications (fast solution)


- Number of spurious match estimates
 Positional errors sampling for both catalogues
 $N_{spur} = \sum_{A} \sum_{B} S_{conv} / S_{pixel}$
- SDSS7 x 2MASS, level 6, 8min (not yet multithreaded!)

Going further...

Magnitude-dependent LRs (fast solution)

- kNN averaging \mathcal{I}
- log N-log S law -
- SDSS7, level 6 ($\sim 1^{\circ}$), 15 187 non empty histograms computed in 30s.



Probability of identifications (fast solution)

- Number of spurious match estimates
 - Positional errors sampling for both catalogues

$$N_{spur} = \sum_{\Delta} \sum_{R} S_{conv} / S_{pixel}$$

 SDSS7 x 2MASS, level 6, 8min (not yet multithreaded!)

