Transformations de programmes pour la grille

Stéphane Genaud

genaud@icps.u-strasbg.fr

LSIIT-ICPS, Université Louis Pasteur

Strasbourg – France

http://grid.u-strasbg.fr/

▶ Le projet TAG (depuis septembre 2001)

- Le projet TAG (depuis septembre 2001)
- Notre grille test

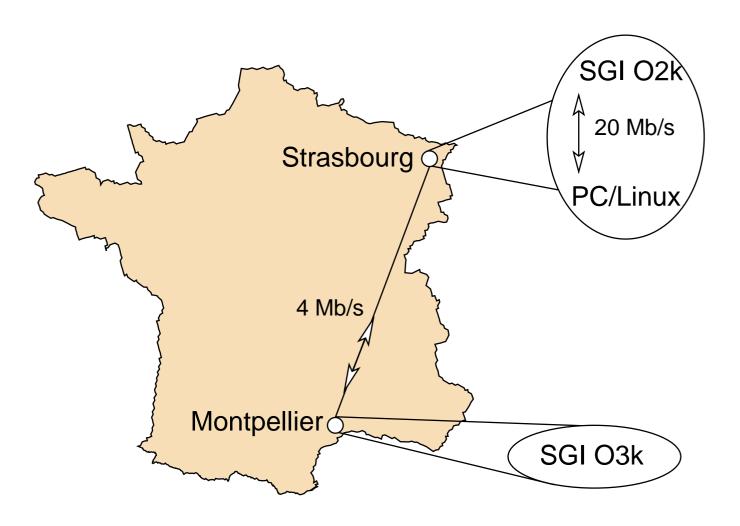
- Le projet TAG (depuis septembre 2001)
- Notre grille test
- Deux applications de test

- Le projet TAG (depuis septembre 2001)
- Notre grille test
- Deux applications de test
- Modifications envisageables

- Le projet TAG (depuis septembre 2001)
- Notre grille test
- Deux applications de test
- Modifications envisageables
- Conclusion

Le projet TAG

Objectifs du projet


- Acquérir une expertise sur l'exécution d'applications parallèles sur une grille
 - Codes scientifiques réels écrits en MPI
 - Grille de test basée sur Globus
- Credo: modification du code source nécessaire à l'équilibre de charge
- Apprendre de l'expérience, déduire des règles générales d'écriture de programme ou transformations

Une grille test

Notre grille expérimentale

Les nœuds de la grille

Nom	Localisation	Processeurs
seven	Illkirch	52×Mips
6 PC divers	"	Intel/AMD
pellinore	"	2×Intel
merlin	"	2×Intel
irmasrv2	Strasbourg (site Irma)	4×Sparc
irmasrv3	"	12×Sparc
2 PC divers	Strasbourg (site Eost)	1×Intel
PC	Strasbourg (site IECS)	1×Intel
biogrid01	Clermont-Ferrand	4×Intel
minerve	Montpellier	512×Mips

L'« intergiciel » installé

- Systèmes d'exploitation : Linux, IRIX, Solaris
- Globus (1.1.4, 2.0, 2.1)
- MPICH-G2 (1.2.2.3)

MPICH-G2 permet l'exécution immédiate des applications MPI

- MPICH-G2 permet l'exécution immédiate des applications MPI
- MPICH-G2 s'interface avec la bibliothèque MPI du constructeur

- MPICH-G2 permet l'exécution immédiate des applications MPI
- MPICH-G2 s'interface avec la bibliothèque MPI du constructeur
- Globus gère les tâches d'identification (single sign-on)

- MPICH-G2 permet l'exécution immédiate des applications MPI
- MPICH-G2 s'interface avec la bibliothèque MPI du constructeur
- Globus gère les tâches d'identification (single sign-on)
- Globus facilite la localisation des binaires (GLOBUS_GASS_URL)

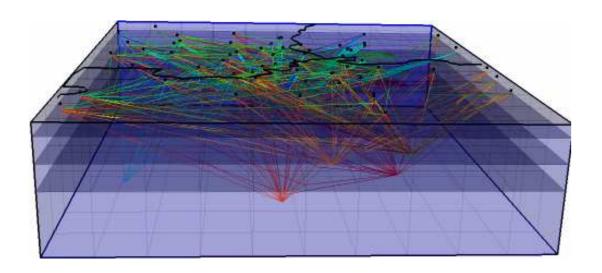
La compilation multi-systèmes est fastidieuse

- La compilation multi-systèmes est fastidieuse
- La fiabilité d'une exécution est faible

- La compilation multi-systèmes est fastidieuse
- La fiabilité d'une exécution est faible
- Rappel : Globus est un toolkit

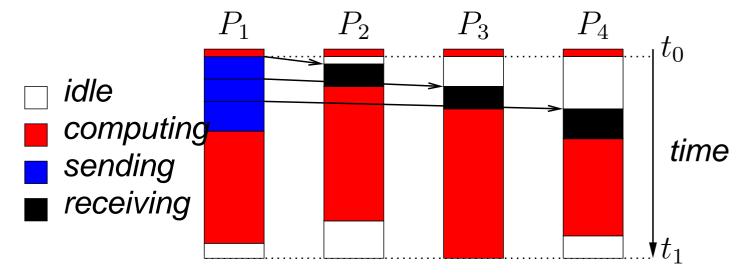
- La compilation multi-systèmes est fastidieuse
- La fiabilité d'une exécution est faible
- Rappel : Globus est un toolkit
 - N'intègre pas de système d'information sur l'état de la grille

- La compilation multi-systèmes est fastidieuse
- La fiabilité d'une exécution est faible
- Rappel : Globus est un toolkit
 - N'intègre pas de système d'information sur l'état de la grille
 - Ne fournit pas d'ordonnanceur


Les applications

Code de géophysique

Tomographie sismique pour un modèle de vitesse


- Retracer les chemins des ondes sismiques enregistrées
- Mailler la zone étudiée (le globe entier)
- Calculer des variations de vitesse dans chacune des mailles

Code de géophysique

- Application embarrassingly parallel (phase 1)
- Distribution des données initiales : MPI_Scatter

La distribution conduit à un « effet d'escalier »

On suppose :

- On suppose :
 - Indépendance des données

- On suppose :
 - Indépendance des données
 - Coût uniforme de traitement

- On suppose :
 - Indépendance des données
 - Coût uniforme de traitement
- Deux possibilités:

Transformer en maître/esclave dynamique

- On suppose :
 - Indépendance des données
 - Coût uniforme de traitement
- Deux possibilités:

Transformer en maître/esclave dynamique

Remplacer MPI_Scatter par MPI_Scatterv

Calcul de la nouvelle distribution:

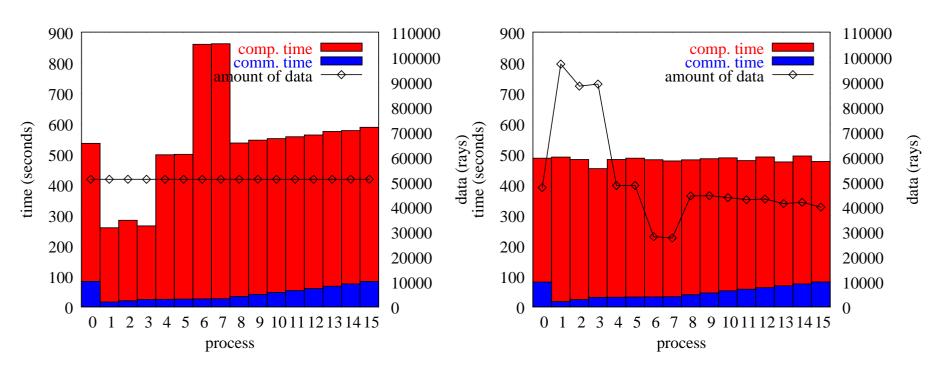
trouver la meilleure distribution (algo. général, lent)

Calcul de la nouvelle distribution:

- trouver la meilleure distribution (algo. général, lent)
- programmation linéaire (contraintes linéaires, gourmand)

Calcul de la nouvelle distribution:

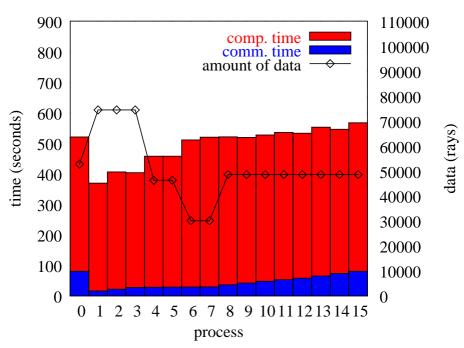
- trouver la meilleure distribution (algo. général, lent)
- programmation linéaire (contraintes linéaires, gourmand)
- approximation en rationnels d'un système d'équations (égalité des temps de fin) puis arrondi (rapide, suffisant)



Expérience sur 16 processeurs

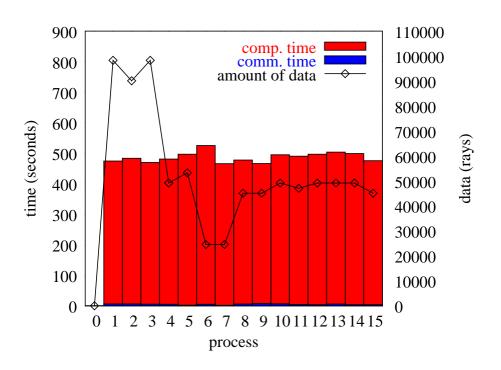
Nom	Localisation	Processeurs
dinadan	Strasbourg-Sud	1 × PIII/933
PC divers	u	4×XP1800+
pellinore	"	2×PIII/800
seven	Strasbourg-Sud	2×Mips R12K
minerve	Montpellier	8×Mips R14K

Résultats expérimentaux



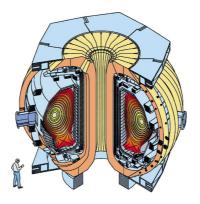
Sans équilibrage

Équilibrage


Équilibrage sans réseau

Équilibrage sans réseau

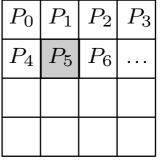
Maître/Esclave


Maître/Esclave : nécessite de réécrire la partie communication

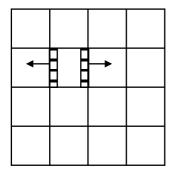
Physique des plasmas

Simulation de fusion nucléaire

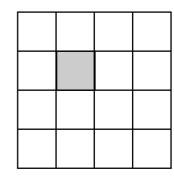
- Simulation non-particulaire dans une chambre de confinement (tokamak)
- Dans l'espace des phases, calcul de la probabilité de présence d'une particule

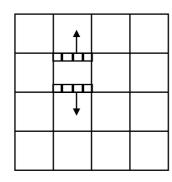


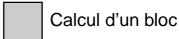
Vue éclatée d'un tokamak



Physique des plasmas


Suite d'itérations et de communications de proche en proche


1ère opération d'une itération


2ème opération

3ème opération

Dernière opération

But : permettre l'équilibre de charge dans l'application

Distribution des données contrainte par les dépendances

But : permettre l'équilibre de charge dans l'application

- Distribution des données contrainte par les dépendances
- Nombre de processus libre

But : permettre l'équilibre de charge dans l'application

- Distribution des données contrainte par les dépendances
- Nombre de processus libre

Solution : augmenter le nombre de processus/processeur

But : permettre l'équilibre de charge dans l'application

- Distribution des données contrainte par les dépendances
- Nombre de processus libre

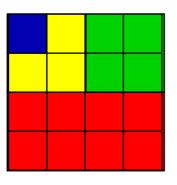
Solution : augmenter le nombre de processus/processeur

Immédiat sans réécriture

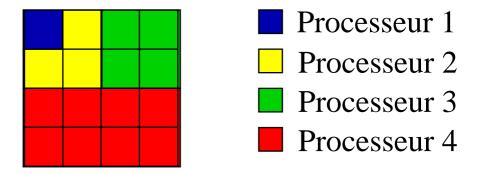
But : permettre l'équilibre de charge dans l'application

- Distribution des données contrainte par les dépendances
- Nombre de processus libre

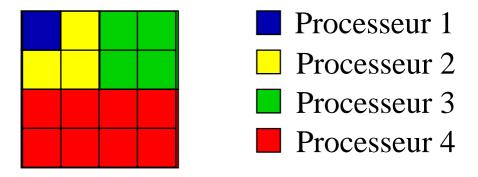
Solution : augmenter le nombre de processus/processeur


- Immédiat sans réécriture . Réecriture : émulation de ce fonctionnement

Ajout d'une description du placement des blocs sur les processeurs. Le placement est fonction de la grille.


Ajout d'une description du placement des blocs sur les processeurs. Le placement est fonction de la grille.

- Processeur 1
- Processeur 2
- Processeur 3
- Processeur 4


Ajout d'une description du placement des blocs sur les processeurs. Le placement est fonction de la grille.

Notion de *processus émulé*, définissant l'unité de travail élémentaire.

Ajout d'une description du placement des blocs sur les processeurs. Le placement est fonction de la grille.

Notion de *processus émulé*, définissant l'unité de travail élémentaire.

L'équilibrage de charge est fonction du nombre de processus émulés et du placement

Comparaison du temps d'exécution :

sur machine parallèle

Comparaison du temps d'exécution :

- sur machine parallèle
- sur la grille sans puis avec équilibrage de charge

Comparaison du temps d'exécution :

- sur machine parallèle
- sur la grille sans puis avec équilibrage de charge
- sur la grille en tenant compte de la topologie réseau

Comparaison du temps d'exécution :

- sur machine parallèle
- sur la grille sans puis avec équilibrage de charge
- sur la grille en tenant compte de la topologie réseau
- sur la grille en minimisant les communications inter-processus

Configuration de la grille

Nom	Localisation	Processeurs
seven	Strasbourg-Sud	4×Mips R12K
PC divers	Strasbourg-Centre	2×PIV 1800
merlin	Strasbourg-Sud	2×XP 2000+
PC	ii .	1×XP 1800+
pellinore	ii .	2×PIII/800
athena	Montpellier	4×Mips R14K
PC	Strasbourg-Sud	1×XP 1800+

Résultats sur la grille

Configuration	CPU	Durée (s)
Grille sans eq.	16	1200
Grille avec eq.	11	1050
+ Topo	11	680
+ Répartition	11	500

Résultats sur machine parallèle

Configuration	CPU	Durée (s)
Machine parallèle	16	28
Machine parallèle	4	65

- Temps de communication très importants
- L'application est le prototype de la pire application pour une grille

Conclusions

MPI & grille, possible?

- MPICH-G2 permet un portage immédiat
- Environnement Globus viable à court terme
- Exécution inefficace
- Nécessite au minimum d'équilibrer la charge
- Travail important? Automatisable?
- Aujourd'hui pas adapté à une petite granularité
- Examiner néanmoins le temps de restitution

