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Abstract. An extensive set of fine structure levels and corresponding transition probabilities for allowed and forbidden tran-
sitions in Fe is presented. A total of 490 bound energy levels of Fe of total angular momenta 0≤ J ≤ 7 of even
and odd parities with 2≤ n ≤ 10, 0≤ l ≤ 8, 0 ≤ L ≤ 8, and singlet and triplet multiplicities, are obtained. They translate to
over 2.6×104 allowed (E1) transitions that are of dipole and intercombination type, and 2312 forbidden transitions that include
electric quadrupole (E2), magnetic dipole (M1), electric octopole (E3), and magnetic quadrupole (M2) type representing the
most detailed calculations to date for the ion. Oscillator strengthsf , line strengthsS, and coefficientsA of spontaneous emis-
sion for the E1 type transitions are obtained in the relativistic Breit-Pauli R-matrix approximation.A-values for the forbidden
transitions are obtained from atomic structure calculations using codes SUPERSTRUCTURE and GRASP. The energy levels
are identified in spectroscopic notation with the help of a newly developed level identification algorithm.Nearlyall 52 spec-
troscopically observed levels have been identified, their binding energies agreeing within 1% with our calculation. Computed
transition probabilities are compared with other calculations and measurement. The effect of 2-body magnetic terms and other
interactions is discussed. The present data set enhances by more than an order of magnitude the heretofore available data for
transition probabilities of Fe.
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1. Introduction

Ne-like Fe attracts great astrophysical interest with some
of the most prominent spectral lines in the X-ray and the
EUV regimes. These lines are abundantly evident from diverse
sources such as the solar corona and other stellar coronae (e.g.
Brickhouse et al. 2001), and active galactic nuclei (e.g. Lee
et al. 2001). Fe also plays a role in benchmarking lab-
oratory experiments and theoretical calculations. Recent Iron
Project (IP, Hummer et al. 1993) work has included the com-
putation of collision strengths and rate coefficients by electron
impact excitation of Fe and diagnostics of laboratory and
astrophysical spectra (Chen & Pradhan 2002; Chen et al. 2002
– hereafter CPE02). Spectral analysis moreover requires tran-
sition probabilities for observed allowed and forbidden transi-
tions. Transition probablities are also required to account for
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radiative cascades from higher levels that contribute to level
populations; cascades generally proceed via strong dipole al-
lowed transitions, and may entail fairly highly excited levels.
Therefore a fairly large and complete set of data is needed for
astrophysical models of Fe.

Smaller sets of transitions are available from other sources.
An evaluated compilation of data, obtained by various in-
vestigators using different approximations, can be found in
the National Institute for Standards and Technology database
(NIST: www.nist.gov). A previous set of non-relativistic data
for Fe  was obtained by M. P. Scott under the Opacity
Project (OP 1995, 1996), which are accessible through the
OP database, TOPbase (Cunto et al. 1993). These results are
in LS coupling and consider only the dipole allowedLS multi-
plets; no relativistic effects are taken into account.

The present calculations are carried out for extensive sets
of oscillator strengths, line strengths, and transition probabil-
ities of dipole allowed, intercombination, and forbidden elec-
tric quadrupole and octopole, magnetic dipole and quadrupole
fine structure (FS) transitions in Fe up to n ≤ 10.
Transitions of type E1 are obtained in the relativistic Breit-
Pauli R-matrix method developed under the Iron Project.
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Configuration mixing type atomic structure calculations, using
codes SUPERSTRUCTURE (Eissner et al. 1974) and GRASP
(Parpia et al. 1996) which is based upon the multiconfigura-
tion Dirac-Fock (MCDF) method, are employed for the forbid-
den E2, E3, and M1, M2 transitions. One of the primary tasks
is the spectroscopic identification of levels and lines of E1 tran-
sitions. We apply the recently developed techniques (Nahar &
Pradhan 2000) for a reasonably complete spectroscopic dataset
to Fe.

2. Formulation

We employ the relativistic Breit-PauliR-matrix (BPRM) ap-
proach in a collision type calculation for bound states followed
by computing radiative processes: Scott & Burke 1980; Scott
& Taylor 1982; Hummer et al. 1993; Berrington et al. 1995.
Unlike calculations inLS coupling, when radiative transition
amplitudes vanish unless∆S = 0, intermediate coupling calcu-
lations include intercombination lines.

Details of this close coupling (CC) approach to radiative
processes are discussed in earlier papers, such as in the first
large scale relativistic BPRM calculations for bound-bound
transitions in Fe and Fe (Nahar & Pradhan 1999),
Fe  (Nahar et al. 2000), Ar and Fe (Nahar 2000). In
the present work electric octopole and magnetic dipole transi-
tions are considered for the first time in the IP series. A brief
outline of the formulation is henceforth given.

The wavefunctionΨ (E) for the (N+1) electron system with
total spin and orbital angular momenta symmetryS Lπ or to-
tal angular momentum symmetryJπ is expanded in terms of
“frozen” N-electron target ion functionsχi and vector coupled
collision electronsθi ,

ΨE(e + ion) = A
∑

i

χi(ion)θi +
∑

j

cjΦ j(e + ion) , (1)

in some specific stateSiLiπi or levelJiπi, indexi marking chan-
nelsSiLi(Ji)πi k2

i `i(S Lπ or Jπ) with energyk2
i of the colliding

electron. The second sum expands correlation functionsΦ j as
products withN + 1 bound orbital functions that (a) compen-
sate for the orthogonality conditions between the continuum
and the bound orbitals, and (b) represent additional short-range
correlation that is often of crucial importance in scattering and
radiative CC calculations for eachS Lπ.

In IP work we restrict the (N + 1)-electron Breit-Pauli
Hamiltonian to

HBP
N+1 = HNR

N+1 + Hmass
N+1 + HDar

N+1 + Hso
N+1, (2)

whereHNR
N+1 is the non-relativistic Hamiltonian

HNR
N+1 =

N+1∑
i=1

−∇2
i −

2Z
ri
+

N+1∑
j>i

2
ri j

 · (3)

Among the three 1-body terms of Breit-Pauli order the mass-
velocity and the Darwin term does not breakLS symmetry
while improving energy positions, whereas terms involving the
magnetic moment of electrons split termsLS into fine-structure

levelsJπ:

Hmass= −α
2

4

∑
i

p4
i , HDar =

α2

4

∑
i

∇2

(
Z
ri

)
,

Hso = α2
∑
i=1

Z

r3
i

l(i) · s(i)⇒
∑

qmax+1

ζBW
nl l(i) · s(i), (4)

“⇒” indicating that mutual spin-orbit and spin-other-orbit in-
teraction withqmaxclosedshell electrons is accounted for in
an ordinary spin-orbit parameterζBW

nl for the valence electrons
as a screening effect (Blume & Watson 1962). Unlike-
 the current BPRM code ignores the BP 2-body
spin-orbit, spin-other-orbit and spin-spin terms betweenva-
lenceshell electrons.

R-matrix solutions of coupled equations to total symme-
tries LS are recoupled in a pair coupling scheme on adding
spin-orbit interaction to obtain (e+ ion) states of totalJπ, in the
end yielding (N + 1)-electron solutions

HBP
N+1Ψ = EΨ . (5)

Rather than dealing with positive energies (E > 0) as in or-
dinary collision processes we focus on an eigenvalue prob-
lem (E < 0) for the electron described byθ, leading to discrete
bound statesΨB.

The primary quantity expressing radiative excitation or de-
excitation in a weak field is the line strength

SXλ(i j ) =
∣∣∣∣〈Ψ j

∥∥∥OXλ
∥∥∥Ψi

〉∣∣∣∣2 , S( ji ) = S(i j ). (6)

Forelectricmultipole transitions in the length formulation (and
long wave-length approximation) it does not explicitly depend
upon the transition energy, as

OEλ = b[λ]
N+1∑
p=1

C[λ] (p)rλp, b[λ] =

√
2
λ + 1

· (7)

Transition probabilitiesA and absorptionoscillator strengths
( f -values) between bound statesi and j and excitation en-
ergyEi j = Ej − Ei are written in terms of the line strengthS,
observing that Eq. (3) implies scaling of energies in units

of Ry=
α2

2
melc

2 = 13.6 eV, hence time unitτ0 = ~/Ry =

4.838× 10−17 s:

fi j =
Eji

3gi
SE1(i j ), gi fi j = −g j f ji = (g f )i j (8)

AE1
ji · τ0 = α3 gi

g j
E2

ji fi j (9)

in the case of electric dipole radiation Eλ = E1. The symbols
in these equations have their usual meaning, in particularg j

andgi being the statistical weights of the upper and lower states
respectively. Hypervirial identities arising from the commuta-
tor [rH ]− yield alternative formulations, velocity formulation
for a start, that probe the radial wave functions less far out.
With HNR it leads to simple substitutions ofrλ in Eq. (7) – but
to additional terms of orderα2 for HBP! BPRM ignores such
“velocity” terms: they are not large enough though for Fe
to render comparison of length with velocity results a useless
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tool (yet better left to NR-results). In the magnetic dipole case
the radiative operator to the line strength expression (6) reads

OM1 =
∑

p

l(p) + 2s(p) +
α2

2

{
∂2

∂r2
p
+ . . . +

∑
p′>p

. . .

rp′p

}
; (10)

where the sum runs over electron coordinates,l ands are the
orbital and spin operators respectively. Details on the correc-
tion of relative BP order can be found inO  work of 1981 by
Eissner and Zeippen. Magnetic quadrupole (λ = 2) radiation is
treated to lowest order, i.e.

OMλ = b[λ]
∑

p

rλ−1
p

[
C[λ−1](p) ×

{
l(p) + (λ + 1)s(p)

}][λ]
. (11)

The lifetime of a level can be computed as

τk =
1
Ak
, (12)

where Ak =
∑

i Aki

is the total radiative transition probability for levelk, i.e.

giA
E1
ki = 2.6774× 109s−1 (Ei − Ek)

3SE1(i, k) (13)

(the observed rate) in the electric dipole case E1. The Einstein
coefficients for spontaneous decay by higher order multipole
radiation that need be considered for transitions down to the
10 Å range read as follows:

electric quadrupole (E2) and magnetic dipole (M1)

g jA
E2
ji = 2.6733× 103 s−1 (Ej − Ei)5SE2(i, j) (14)

and

g jA
M1
ji = 3.5644× 104 s−1 (Ej − Ei)

3SM1(i, j); (15)

electric octopole (E3) and magnetic quadrupole (M2)

g jA
E3
ji = 1.2050× 10−3 s−1 (Ej − Ei)7SE3(i, j) (16)

and

g jA
M2
ji = 2.3727× 10−2 s−1 (Ej − Ei)5SM2(i, j) . (17)

In approximations like BP one should be careful with the ra-
diative magnetic operators about terms of orderα2, in particu-
lar in OM1, which cannot connect different configurations by its
leading terml(p)+2s(p) because the (tensor-) radial portion re-
duces to trivial 1; does add both 1-body and
2-body contributions of Breit-Pauli order to M1 but not to M2.

3. Computation

BPRM calculations span several stages of computation
(Berrington et al. 1995). We take radial Fe wavefun-
tions from  (Eissner et al. 1974) as in-
put to STG1 to compute Slater, magnetic and multipole inte-
grals – obtained with Thomas-Fermi scaling parametersλnl

of 1.3835, 1.1506, 1.0837, 1.0564, 1.0175, 1.0390 for orbitals
nl = 1s, 2s, 2p. . . 3d, which leads to excited levels 2s22p5 2Po

1/2

and 2s2p6 2S1/2 at 0.9403 and 9.8092 Rydbergs above the
ground state 2s22p5 2Po

3/2 (while including correlation terms

from 6 configurations: 2s22p43l and 2s2p53l – “1s2” suppressed
for brevity); the excitation energies above the ground state
compare with NIST data of 0.93477 and 9.7023 Ry respec-
tively. Other excited levels of Fe lie too high to play a
role as parent for any Fe bound states (50 Ry separating
M- from L-shell: level 2s22p43s4P5/2 at 57.01 Ry), and there-
fore need not be considered for radiative calculations. Radial
integrals for the partial wave expansion in Eq. (1) are specified
for orbitals 0 ≤ ` ≤ 9 as a basis ofNRANG2 = 11 “contin-
uum” functions – sufficient for bound electrons withn < 10 at
a radiusRA = 2.3750 (Bohr radiia0) of theR-matrix box.

Along with the target descriptionSTG2 input specifies
which collisional Fe symmetriesLS eventually contribute
to 0 ≤ J ≤ 7 or 8 of even and odd parities, namely 0≤ L ≤ 7
or 8, and multiplicities (2S + 1) = 1, 3. The second term
in Eq. (1), on bound state correlation functions, is specified
to include all possible (N+ 1)-particle configurations from a
vacant 2s shell to maximum occupancies 2s2, 2p6, 3s2, 3p2,
and 3d2.

Stage RECUPD transforms to collisional symmetries
J ≤ 7 or 8 in a pair-coupling representation, and the
(e + ion) HamiltonianR-matrices for each totalJπ are diag-
onalized inSTGH employing observed target energies.

In STGB fine structure bound levels are found through the
poles in the (e+ ion) Hamiltonian, searched over a fine mesh
of effective quantum numberν: ∆ν = 0.001. The mesh is or-
ders of magnitude finer than the typical∆ν = 0.01 required
to find LS energy terms. Intermediate coupling calculations
therefore need orders of magnitude more CPU time than cal-
culations inLS coupling. Since the fine structure components
of higher excited states are more densely packed, a mesh finer
than∆ν = 0.001 is essential to avoid missing any levels.

Spectroscopically identifying a large number of fine struc-
ture levels poses a major challenge, as the BP Hamiltonian is
labelled only by the total angular momentum and parity, i.e.
by Jπ, which is incomplete for unique identification. Complete
identification of levels is needed for various spectral diagnos-
tics and spectrocopic applications in a lab. A new procedure has
been developed and encoded in the program PRCBPID to iden-
tify these levels by a complete set of quantum numbers through
analysis of coupled channels in the CC expansion (Nahar &
Pradhan 2000). This procedure generally yields unambiguous
level identification for most levels. However, for mixed lev-
els where the identification is to some extent arbitrary, we as-
sign levels in descending multiplicity (2S + 1) and total an-
gular orbital momentumL. The full spectroscopic designation
readsCt(StLtπt)JtnlJ(S L)π, whereCt, StLtπt, Jt are the config-
uration, parent term and parity, and total angular momentum of
target states,nl are the principal and orbital quantum numbers
of the outer or valence electron, andJ andS Lπ are the total
angular momentum, term and parity of the (N+1)-electron sys-
tem. The procedure also establishes a correspondence between
the fine structure levels and their properLS terms, and enables
completeness checks to be performed as exemplified below.
STGBB can compute radiative data for transitions of type E1

and E2; the code exploits methods developed by Seaton (1986)
to evaluate the outer region (>RA) contributions to the radia-
tive transition matrix elements. However, present work reports
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Table 1. Comparing effective quantum numbersνo of observed bind-
ing energiesEo with νc computed in stageSTGB of BPRM (νmeasured
from respective Fe thresholdt). Index IJ counts levels within
symmetryJπ in energy order, * indicating that levelJ belongs to an
incompletely observed multiplet.

Level J IJ Eo/Ry νo νc t

2s22p6 1S 0 1 92.760 1.7651 1.7643 1
2s22p5(2P*3/2)3s 3Po 2 1 39.463 2.7062 2.7063 1
2s22p5(2P*3/2)3s 3Po 1 1 39.323 2.7110 2.7111 1
2s22p6(2P*1/2)3s 3Po 0 1 38.533 2.7060 2.7064 2
2s22p6(2P*1/2)3s 1Po 1 2 38.446 2.7090 2.7095 2
2s22p53p 3S 1 1 37.238 2.7858 2.7858 1
2s22p53p 3D 3 1 36.863 2.8000 2.8001 1
2s22p53p 3D 2 1 36.981 2.7955 2.7958 1
2s22p53p 3D 1 3 36.093 2.7937 2.7945 2
2s22p53p 1P 1 2 36.780 2.8031 2.8034 1
2s22p53p 3P 2 2 36.646 2.8082 2.8085 1
2s22p53p 3P 1 4 35.854 2.8028 2.8034 2
2s22p53p 3P 0 2 36.244 2.8238 2.8246 1
2s22p53p 1D 2 3 35.826 2.8039 2.8046 2
2s22p53p 1S 0 3 34.871 2.8410 2.8437 2
2s22p53d 3Po 2 2 33.662 2.9301 2.9324 1
2s22p53d 3Po 1 3 33.778 2.9250 2.9260 1
2s22p53d 3Po 0 2 33.862 2.9214 2.9226 1
2s22p53d 3Fo 4 1 33.656 2.9303 2.9329 1
2s22p53d 3Fo 3 1 33.599 2.9329 2.9346 1
2s22p53d 3Fo 2 4 32.672 2.9325 2.9346 2
2s22p53d 1Do 2 3 33.472 2.9384 2.9403 1
2s22p53d 3Do 3 2 33.393 2.9419 2.9444 1
2s22p53d 3Do 2 5 32.598 2.9357 2.9380 2
2s22p53d 3Do 1 4 33.052 2.9570 2.9595 1
2s22p53d 1Fo 3 3 32.563 2.9373 2.9397 2
2s22p53d 1Po 1 5 32.070 2.9591 2.9525 2
2s2p63p 3Po 1 * 6 27.159 2.8000 2.8047 3
2s2p63p 1Po 1 7 26.836 2.8124 2.8171 3
2s22p5(2P*3/2)4s 3Po 1 * 8 20.899 3.7187 3.7209 1
2s22p5(2P*1/2)4s 1Po 1 9 20.014 3.7142 3.7188 2
2s22p54d 3Po 1 * 10 18.802 3.9205 3.9283 1
2s22p54d 3Do 1 * 11 18.455 3.9572 3.9623 1
2s22p54d 1Po 1 12 17.590 3.9498 3.9540 2
2s22p5(2P*3/2)5s 3Po 1 * 13 12.960 4.7222 4.7201 1
2s22p5(2P*1/2)5s 1Po 1 14 12.022 4.7228 4.7173 2
2s22p55d 3Po 1 * 15 12.022 4.9030 4.9258 1
2s22p55d 3Do 1 * 16 11.776 4.9539 4.9610 1
2s22p55d 1Po 1 17 10.910 4.9395 4.9484 2
2s2p64p 3Po 1 * 18 10.236 3.8072 3.8142 3
2s2p64p 1Po 1 19 10.090 3.8212 3.8235 3
2s22p5(2P*3/2)6s 3Po 1 * 20 8.7776 5.7380 5.7196 1
2s22p5(2P*3/2)6d 3Po 1 * 22 8.1488 5.9555 5.9547 1
2s22p5(2P*1/2)6d 1Po 1 * 24 7.2558 5.9401 5.9417 2
2s22p5(2P*3/2)7s 3Po 1 * 25 6.3810 6.7298 6.7220 1
2s22p5(2P*3/2)7d 3Po 1 * 26 5.9709 6.9571 6.9240 1
2s22p5(2P*1/2)7d 1Po 1 * 29 5.0232 6.9647 6.9422 2
2s22p5(2P*3/2)8d 3Po 1 * 31 4.4582 8.0514 7.9267 1
2s22p5(2P*1/2)8d 1Po 1 * 35 3.6016 7.9817 7.9397 2
2s2p65p 3Po 1 * 42 2.7450 4.8185 4.8141 3
2s2p65p 1Po 1 43 2.7450 4.8185 4.8250 3

n. b.Et /Ry = 0.0, 0.9348, 9.7023 [M-shell: 57.08, . . . 74.14,
N-shell: 77.05, . . . 91.36, O-shell: 85.71, . . . 98.66]

only E1 transitions fromSTGBB. Results for other types of
transitions are obtained from, first optimiz-
ing the energy functional over the lowest 49 termsLS (Chen
et al. 2002, CPE02). They arise from 15 configurations: 2s22p6,
2s22p53l, 2s22p54l, 2s12p63l, and 2s12p64l; the scaling param-
etersλnl for the Thomas-Fermi-Dirac-Amaldi type potential
of orbital nl are listed in Table 1 of CPE02. Much effort was
devoted to choosing scaling parameters to optimise the tar-
get wavefunctions of the M-shell levels. The primary crite-
ria in this selection are agreement with the observed values
for (a) level energies and fine structure splittings within the
lowest termsLS, and (b) f -values for a number of the low
lying dipole allowed transitions. Another practical criterion is
that the calculated coefficientsA should be variationally stable.

Experimental energy level differences are employed in the
calculation of all types of transition probabilities wherever
available, ensuring proper phase space (or energy) factors forf
or A; only a small number of Fe levels are spectroscopi-
cally observed though.

In addition to over 26 000 electric dipole transitions we
have computedAE2, AM1, AE3 and AM2 for 2312 transitions
among the first 89 levels, about half of these forbidden tran-
sition probabilities larger than 103 s−1. Selected transitions
(Table 7) are compared with various other calculations. Results
by Safronova et al. (2002, private communication) are included
for comparison.

4. Results

We first describe the BPRM calculations for the energy levels
and E1 dipole and intercombination transitions in Fe and
then discuss higher multipole order radiation.

4.1. Fine structure levels

A total of 490 bound fine structure energy levels of Fe are
obtained from interacting channels, or Rydberg series

E = Et − z2

ν2
, ν = n− µl±1/2(t) (18)

with series limits Et at the 3 Fe  “target” levels
2s22p5 2Po

3/2, 1/2, 2s2p6 2S1/2, for symmetries 0≤ J ≤ 7 (both
parities), implying series orbitals 0≤ l ≤ 8. In intermediate
coupling language we consider bound state levels of Fe
to angular momentaL ≤ 8 of singlet and triplet symmetries
(multiplets to highL may thus be incomplete). Series are kept
below effective quantum numbersν = 11 measured from the
target ground state. These are the most detailed close coupling
calculations to date for the ion.

Table 1 tentatively matches the 52 spectroscopically ob-
served levels from NIST with identified levels from our cal-
culations (the level indexI J, in ascending energy order within
a given symmetryJπ, is most useful for reference in sub-
sequent tables). Calculated effective quantum numbersνc
of the first 14 entries differ from observation within nu-
merical uncertainties and errors due to neglect of two-body
magnetic effects: typically∆µ ≡ ∆ν = 0.0005. The abrupt
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jump to 0.0027 at level 15 and typical values of 0.002 there-
after can be explained by the effect of M-shell target levels,
for good reasons not included in the collision type work. For
the lowest of the 105 M-shell levels a structure calculation
yields 57.08 Ry above the Fe ground state; taking a bind-
ing energy of 92.76 Ry for a 2p electron from the first entry in
Table 1, a first quasi-degenerate state can be expected an ade-
quate 35.68 Ry below the ground state. We see that such homol-
ogous states do not seriously affect the accuracy of our calcu-
lation. More important is that M-shell target configurations do
not render it incomplete: a binding energy of about 40 Ry for a
3s electron taken from entries 2–5 of Table 1 would lead to true
new levels beginning (60−40)Ryabovethe ionization limit. It
is also worth noting that the quantum defects of these 4 entries
are close enough for mere differences in the Coulomb envi-
ronment, as s-electrons are not affected by ordinary spin-orbit
coupling. Way down the table agreement deteriorates. While
∆µ ≈ 0.005 may be considered acceptable and a value 0.01
needs some explanation, the attempts with the 7d and more
so 8d levels are an utter failure, 8d off by 0.13 and 0.04, not
to speak of a negative “observed” quantum defect of the sec-
ond 8d level. Such binding energiesEo are unlikely.

A complete set of energy levels to Fe is available elec-
tronically. As in recent work (e.g. Nahar et al. 2000) the en-
ergies are presented in two formats: (i) inLS term order for
spectroscopy and completeness check, and (ii) inJπ order for
practical applications. In the term format (i) the fine structure
components of aLS term are grouped together according to the
same configuration, useful for spectroscopic diagnostics. It also
checks for completeness of a set of energy levels that should be-
long to sameLS value and detects any missing level. Table 2a
presents a sample of the table containing total sets of energies.
The table contains partial sets of levels of Fe. The columns
specify the coreCt(S Lπ J)t, the labelnl of the outer electron,
total angular momentunJ, energy in Rydbergs, the effective
quantum numberν of the valence electron, and possible term
designationsLS of the level. No effective quantum number is
assigned to an equivalent electron state.

The top line of each set in Table 2a gives the numberNlv

of expected fine structure levels, spin and parity of the set
(2S+1Lπ), and the values ofL; the total angular quantum num-
bersJ associated with eachL are quoted parenthetically. This
line is followed by the set of BPRM energy levels of same
configurations.Nlv(c), at the end of the set, specifies the to-
tal number ofJ-levels obtained. If Nlv= Nlv(c) for a set,
the calculated energy set is complete. Correspondence of cou-
plings and completeness of levels is established by the pro-
gram PRCBPID, which detects and prints missing levels. Each
level of a set is further identified by all possible termsLS (spec-
ified in the last column of the set). MultipleLS terms are ar-
ranged according to multiplicity (2S + 1) andL as mentioned
above. It may be noted that levels are grouped consistently,
closely spaced in energies and effective quantum numbers, con-
firming proper designation of termsLS. The effective quan-
tum number (ν) is expressed up to two significant digits after
the decimal point; the main object is to show the consistency
of fine structure components in theLS grouping. Each level
may be assigned to one or moreLS terms in the last column.

Table 2a.Sample table of fine structure energy levels of Fe as sets
of LS term components;Ct is the core configuration,ν is the effective
quantum number.

Ct(StLtπt) Jt nl J E/Ry ν S Lπ

Eqv electron/unidentified levels, parity: e

2s22p6 0 −92.8398 1 S e

Nlv(c) = 1: set complete

Nlv = 3, 3Lo: P ( 2 1 0 )

2s22p5 (2Po) 3/2 3s 2 −39.4577 2.71 3 P o

2s22p5 (2Po) 3/2 3s 1 −39.3187 2.71 3 P o

2s22p5 (2Po) 1/2 3s 0 −38.5208 2.71 3 P o

Nlv(c) = 3: set complete

Nlv = 1, 1Lo: P ( 1 )

2s22p5 (2Po) 1/2 3s 1 −38.4324 2.71 1 P o

Nlv(c) = 1: set complete

Nlv = 7, 3Le: S ( 1 ) P ( 2 1 0 ) D ( 3 2 1 )

2s22p5 (2Po) 3/2 3p 1 −37.2397 2.79 3 SPD e

2s22p5 (2Po) 1/2 3p 2 −36.9744 2.80 3 PD e

2s22p5 (2Po) 3/2 3p 3 −36.8541 2.80 3 D e

2s22p5 (2Po) 3/2 3p 2 −36.6391 2.81 3 PD e

2s22p5 (2Po) 1/2 3p 0 −36.2221 2.82 3 P e

2s22p5 (2Po) 1/2 3p 1 −36.0724 2.79 3 SPD e

2s22p5 (2Po) 3/2 3p 1 −35.8374 2.80 3 SPD e

Nlv(c) = 7: set complete

Nlv = 3, 1Le: S ( 0 ) P ( 1 ) D ( 2 )

2s22p5 (2Po) 3/2 3p 1 −36.7729 2.80 1 P e

2s22p5 (2Po) 3/2 3p 2 −35.8059 2.80 1 D e

2s22p5 (2Po) 1/2 3p 0 −34.8040 2.84 1 S e

Nlv(c) = 3: set complete

For a multiple designation Hund’s rule of decreasing multiplic-
ity (2S+1) andL is applied for further arrangement. One reason
for specifying all possible terms is that the order of calculated
and measured energy levels may not exactly match. Another
reason is that although our term order arrangement may not
apply to all cases for complex ions, it is nonetheless useful in
order to establish completeness of fine structure components of
a givenLS multiplet.
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Table 2b. Calculated Fe fine structure levels, table not extended
to symmetries other thanJπ = 0e. This symmetry hasNlv = 20 lev-
els belowν = 11 for the core ground state series: 3 Rydberg series
(ν measured from the respective series limits,E from the core ground
state2P3/2, the first limit).

I Level J E/Ry ν S Lπ

Nlv = 20, J pi = 0 e

1 2s22p6 0 −9.28398E+1 1Se

2 2s22p5 (2Po
3/2) 3p 0 −3.62221E+1 2.825 3Pe

3 2s22p5 (2Po
1/2) 3p 0 −3.48040E+1 2.844 1Se

4 2s2p6 (2S1/2) 3s 0 −2.90350E+1 2.731 1Se

5 2s22p5 (2Po
3/2) 4p 0 −1.95296E+1 3.847 3Pe

6 2s22p5 (2Po
1/2) 4p 0 −1.87056E+1 3.836 1Se

7 2s22p5 (2Po
3/2) 5p 0 −1.22822E+1 4.850 3Pe

8 2s22p5 (2Po
1/2) 5p 0 −1.14454E+1 4.830 1Se

9 2s2p6 (2S1/2) 4s 0 −1.10221E+1 3.734 1Se

10 2s22p5 (2Po
3/2) 6p 0 −8.44845E+0 5.849 3Pe

11 2s22p5 (2Po
1/2) 6p 0 −7.57469E+0 5.828 1Se

12 2s22p5 (2Po
3/2) 7p 0 −6.15891E+0 6.850 3Pe

13 2s22p5 (2Po
1/2) 7p 0 −5.26390E+0 6.828 1Se

14 2s22p5 (2Po
3/1) 8p 0 −4.68712E+0 7.852 3Pe

15 2s22p5 (2Po
1/2) 8p 0 −3.78258E+0 7.827 1Se

16 2s22p5 (2Po
3/2) 9p 0 −3.68406E+0 8.857 3Pe

17 2s2p6 (2S1/2) 5s 0 −3.19987E+0 4.733 1Se

18 2s22p5 (2Po
3/2) 10p 0 −2.97673E+0 9.853 3Pe

19 2s22p5 (2Po
1/2) 9p 0 −2.76993E+0 8.829 1Se

20 2s22p5 (2Po
3/2) 11p 0 −2.45262E+0 10.855 3Pe

Format (ii) keeps the fine structure levels together as they
emerge in the computational procedure: for a given symme-
try Jπ and in energy order as shown for 0e in Table 2b, which
adds up toNlv = 20 levels, after the self-explanatory header
line. This format should be more convenient for easy imple-
mentation in astrophysical or other plasma modeling codes re-
quiring large numbers of energy levels and associated tran-
sitions. Here of course we have a set small and transparent
enough for assignment by hand rather than by the new code
(note how different spin-orbit strength is reflected in the small
difference between the quantum defectsµp of the two series –
here we are facing merely p3/2 with t = 1 and p1/2 with t = 2
because ofJ = 0). The levels are identified by core configura-
tion Ct and level (S LJ)t, the outer electron quantum numbernl,
total J, energy against the ionization thresholdt = 1, effective
quantum numberν associated with the respective series limitt,
and a term designation.

4.2. Oscillator strengths for E1 transitions

The 490 bound fine structure energy levels of Fe give rise
to 26 222 dipole allowed and intercombination E1 transitions.
The electronically available set contains calculated transition
probabilitiesA, oscillator strengthsf , and line strengthsS
along with level energies.

A sample subset of transitions, generated by codeSTGBB,
is presented in Table 3a. The first record of the raw output
file FVALUE specifies the nuclear charge numberZ = 26,
N = 9 electrons in the core ion Fe, and processing direc-
tives (e.g. 0 –perturbative channel coupling betweenRA and∞
disabled, 1 –Buttle correction activated). The next two records,
headers for the subsequent Fe transition array data, iden-
tify this array as a pair (∅ 2J1π1, ∅ 2J2π2) of symmetries (π = 0
for even and=1 for odd parity), here the electric dipole tran-
sition J1 = 0e − J2 = 1o. STGB had computedNJi = 20 levels
of the first symmetry (decoded in Table 2b),NJk = 47 to the
second, hence 20× 47 subsequent records, each prefaced by a
pairIi andIk of level indices (in energy order for the respec-
tive symmetry). Their bound state energiesEi and Ek below
the Fe ground state are shown in Cols. 3 and 4 in re-
duced unitsz2 Ry. The radiative result in the last three columns
are theg f -values of the transition (see Eq. (8)) in length and
velocity form and the coefficient A for spontaneous emission
(derived in the length form, see Eq. (9)). The signs ofg f are
in accord with Eq. (8) and would reverse on swapping the or-
der of symmetriesJπ. Complete spectroscopic identification of
the transitions can be deduced from tables of type 2b. For the
largest listed value, 2.301× 1013/s at (Ii, Ik = 1, 5) and asso-
ciated with excitation energy 60.846Ry, Table 2b verifies the
initial level as the Fe ground state; we have not presented
the odd-parityJ = 1 section but can identifyIi=5 as a low
lying state from Tables 1 or 6 as 2s22p53d1Po

1; this transition
reappears in Table 5 with energy-adjusted 2.28(13)/s.

Table 3b, dealing with the same transition array but taken
from standardSTGBB file stgbb.out makes interesting read-
ing about the internal workings of theR-matrix method, as it
details the contributions to the (unnormalized) radiative tran-
sition amplitudeD. While the radial wave solutions associ-
ated with small principal quantum numbers like 2 or 3 lie en-
tirely inside theR-matrix sphere with radiusRA, they have most
nodes outside at valuesn ≈ 10. The composition ofD there-
fore changes from dominant interior contributionsDI to large
outside portionsDA asn andn′ increase. Perturbatively com-
puted coupling contributionsDP between the propagation range
for DA and infinity equally increase, to stay only just small
enough atn = 11 to be neglected as in Table 2a (IPERT=0)
and in fact most large scale calculations (whereas vital in col-
lisional work!); unlike Buttle contributionsDB, which compen-
sate for the rigid logarithmic boundary condition atRA, their
computation can be fairly time consuming. Especially transi-
tion (15, 29)= (2P1/2 8p 0e−2P1/2 7d 1o) reveals a subtle bal-
ance among the constituents and between the amplitudes in
length and velocity formulation.

The electronically available compilation of resultsf , S,
and A for the E1 transitions is formatted differently from
Table 3a so as to match similar files for other ions (e.g.
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Table 3a. TruncatedSTGBB output “FVALUE”: g f -values and Einstein coefficientsA for [0 0 0 0 2 1] = (0e − 1o) transitions of Fe
[Z=26, core-Nel=9], as function of bound state energiesRE(n1l1 0e) andRe(n2l2 1o) in units ofz2 Ry,z= 26-9. The line strength columnS(E1)
has been added by hand (see Eqs. (7), (8)) for the first transition array.

26 9 IPERT= 0 AC,IBUT= 1.0E-5 1 06/25/01 15:06:37

0 0 0 0 2 1

20 47 RE1 RE2 GFL - E1 - GFV A(E1)*s S(E1)

1 1 -3.212451E-1 -1.360506E-1 -1.225E-01 -1.232E-01 9.396E+11 6.866E-3

1 2 -3.212451E-1 -1.329843E-1 -1.010E-01 -1.020E-01 8.005E+11 5.569E-3

1 3 -3.212451E-1 -1.167997E-1 -8.149E-03 -8.015E-03 7.617E+10 4.138E-4

1 4 -3.212451E-1 -1.141704E-1 -6.222E-01 -5.940E-01 5.967E+12 3.119E-2

1 5 -3.212451E-1 -1.107050E-1 -2.321E+00 -2.214E+00 2.301E+13 1.144E-1

1 6 -3.212451E-1 -9.354728E-2 -3.511E-02 -3.404E-02 4.070E+11 1.601E-3

1 7 -3.212451E-1 -9.243291E-2 -2.843E-01 -2.989E-01 3.328E+12 1.290E-2

1 8 -3.212451E-1 -7.222739E-2 -2.289E-02 -2.328E-02 3.175E+11 9.542E-4

1 9 -3.212451E-1 -6.907663E-2 -1.761E-02 -1.707E-02 2.504E+11 7.249E-4

1 10 -3.212451E-1 -6.480154E-2 -3.289E-03 -3.310E-03 4.837E+10 1.331E-4

1 11 -3.212451E-1 -6.369437E-2 -3.601E-01 -3.275E-01 5.341E+12 1.451E-2

1 12 -3.212451E-1 -6.072860E-2 -3.993E-01 -3.613E-01 6.059E+12 1.591E-2

1 13 -3.212451E-1 -4.488317E-2 -1.004E-02 -1.027E-02 1.715E+11 3.771E-4

1 14 -3.212451E-1 -4.170278E-2 -1.220E-02 -1.168E-02 2.133E+11 4.530E-4

1 15 -3.212451E-1 -4.121385E-2 -1.138E-03 -1.113E-03 1.996E+10 4.219E-5

1 16 -3.212451E-1 -4.063208E-2 -1.935E-01 -1.755E-01 3.407E+12 7.158E-3

1 17 -3.212451E-1 -3.760452E-2 -1.488E-01 -1.349E-01 2.678E+12 5.446E-3

1 18 -3.212451E-1 -3.522922E-2 -1.075E-02 -1.194E-02 1.967E+11 3.902E-4

1 19 -3.212451E-1 -3.483027E-2 -9.202E-02 -9.137E-02 1.688E+12 3.335E-3

.....

1 45 -3.212451E-1 -8.686647E-3 -2.118E-04 -2.123E-04 4.628E+09 7.034E-6

1 46 -3.212451E-1 -8.368791E-3 -1.125E-04 -1.082E-04 2.464E+09 3.733E-6

1 47 -3.212451E-1 -8.321573E-3 -1.418E-02 -1.271E-02 3.105E+11 4.704E-4

2 1 -1.253358E-1 -1.360506E-1 1.012E-01 9.828E-02 7.797E+09 9.804E-2

2 2 -1.253358E-1 -1.329843E-1 2.878E-02 2.541E-02 1.129E+09 3.906E-2

2 3 -1.253358E-1 -1.167997E-1 -9.562E-03 -7.884E-03 1.558E+08 1.163E-2

2 4 -1.253358E-1 -1.141704E-1 -2.041E-01 -2.001E-01 5.689E+09 1.898E-1

.....

20 45 -8.486569E-3 -8.686647E-3 7.494E-05 5.519E-05 2.012E+03 3.822E-3

20 46 -8.486569E-3 -8.368791E-3 -4.901E+00 -4.929E+00 1.520E+07 4.319E+2

20 47 -8.486569E-3 -8.321573E-3 -3.850E-01 -3.826E-01 2.344E+06 2.422E+1

0 2 0 0 0 1

45 19 RE1 RE2 GFL - E1 - GFV A(E1)*S

1 1 -1.288567E-1 -1.332897E-1 2.198E-03 9.246E-04 9.659E+06

1 2 -1.288567E-1 -1.170725E-1 -1.226E-01 -1.213E-01 1.142E+10

1 3 -1.288567E-1 -9.365835E-2 -5.438E-02 -3.476E-02 4.520E+10

.....

0 0 0 0 0 0

for Fe, Nahar 2000). Table 4 shows what the first section of
Table 3a then looks like. The top line retains the charge num-
ber Z but gives ionicNel instead of target-N; the second now
assumes intermediate coupling, soJ = 0e − J = 1o suffices to
specify the transition arrayJiπi − Jjπ j . The subsequent head
line, starting with the numberNJi and NJ j of entries for the
symmetry pair just as in Table 3a, names the quantities tabu-
lated for each of theNJi × NJ j transitions. Again the first two
columns specify a transition by level indicesi and j, while
Rydberg energies of the level pair are no longerz-scaled. The
valueg fL in Col. 5 is the quantityGFL of Table 3a (symmetri-
cal in initial and final state: with statistical weightg = J+1 of

the initial level, carrying the minus sign off = f emissionif the
initial is the upper state!). It is derived from the primary quan-
tity S as of Eqs. (6), (7) given in the next column, hence sub-
script  for length formulation. The associated coefficient Aji

of spontaneous emission trails in Col. 7.

Line strength results from BPRM are used to compute a set
of transition probabilitiesA and f -values for Fe with ob-
served energy separation in favour of the more uncertain cal-
culated energies, exploiting thatS does not depend on level
energies (the procedure is commonly employed and was first
adopted in NIST compilations). The astrophysical models also
in general use the observed transition energies for the relevantf
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Table 3b. TruncatedSTGBB standard output: array (0e − 1o) of Fe, build-up of the dipole transition amplitudeD by theR-matrix code
(L[ength] and V[elocity]).

IPERT = 1 AC = 1.00E-05: BOUND-BOUND TRANSITION DATA FOR

R0 = 40.3750

(IS1,IL1,IP1) = ( 0 0 0 ) (IS2,IL2,IP2) = ( 0 2 1 )

I J TYPE DI DA DB DP D S

1 1 L 1.409E+00 -2.690E-07 2.374E-07 -3.00E-10 1.409E+00 6.867E-03

V 1.413E+00 2.111E-08 -3.675E-08 -4.19E-10 1.413E+00 6.905E-03

1 2 L -1.269E+00 1.270E-06 -2.396E-07 3.27E-10 -1.269E+00 5.569E-03

V -1.275E+00 -1.017E-07 3.502E-08 4.08E-10 -1.275E+00 5.623E-03

1 3 L 3.458E-01 1.759E-07 -5.994E-09 -3.39E-11 3.458E-01 4.138E-04

V 3.429E-01 -9.418E-09 1.170E-09 -2.36E-11 3.429E-01 4.070E-04

1 4 L -3.002E+00 -3.706E-07 4.678E-08 1.21E-10 -3.002E+00 3.119E-02

V -2.933E+00 2.299E-08 -5.802E-09 3.39E-10 -2.933E+00 2.978E-02

1 5 L -5.751E+00 1.836E-06 1.019E-07 1.95E-10 -5.751E+00 1.145E-01

V -5.617E+00 -8.336E-08 -1.237E-08 6.81E-10 -5.617E+00 1.092E-01

.....

1 45 L -4.463E-02 -4.497E-04 7.032E-05 -1.18E-06 -4.501E-02 7.012E-06

V -4.532E-02 7.693E-06 -6.204E-06 -1.13E-08 -4.532E-02 7.107E-06

1 46 L -3.384E-02 -2.662E-04 1.853E-06 -3.98E-08 -3.410E-02 4.024E-06

V -3.342E-02 2.497E-06 1.908E-07 1.70E-09 -3.342E-02 3.864E-06

1 47 L -3.690E-01 -2.725E-04 4.084E-07 -1.58E-06 -3.693E-01 4.718E-04

V -3.498E-01 1.021E-06 3.940E-07 -3.67E-08 -3.498E-01 4.235E-04

2 1 L -5.324E+00 -3.248E-06 8.932E-09 -2.74E-09 -5.324E+00 9.807E-02

V -5.246E+00 -3.527E-06 -2.929E-09 -4.12E-09 -5.246E+00 9.522E-02

2 2 L -3.360E+00 2.728E-07 2.571E-09 1.10E-08 -3.360E+00 3.906E-02

V -3.157E+00 -9.540E-07 -3.769E-08 1.04E-08 -3.157E+00 3.448E-02

.....

15 29 L -1.200E+00 1.125E+01 9.775E-05 -2.27E-03 1.005E+01 3.495E-01

V 1.501E+00 8.534E+00 -9.112E-04 -1.70E-03 1.003E+01 3.483E-01

.....

20 46 L -2.851E-01 -3.503E+02 3.563E-06 -3.01E+00 -3.535E+02 4.325E+02

V -3.524E+00 -3.480E+02 2.785E-03 -3.03E+00 -3.546E+02 4.350E+02

20 47 L 5.763E-01 8.471E+01 -3.862E-04 -2.22E+00 8.307E+01 2.388E+01

V 2.870E+00 8.220E+01 -4.878E-02 -2.21E+00 8.282E+01 2.373E+01

andA data. They are more appropriate for comparison or spec-
tral diagnostics.

CoefficientsA andg f -values have been reprocessed for all
the allowed transitions (∆J = 0,±1) among the observed lev-
els. A partial set of these transitions is presented in Table 5.
The set, also available electronically, comprises 342 transitions
of Fe. The reprocessed transitions are moreover ordered
according to configurationC and multipletLS. This enables
one to obtain thef -values for each multipletLS and check for
completeness of the associated levels. Completeness however

also depends on the observed set of fine structure levels since
the transitions in the set correspond only to the observed lev-
els (NIST). TheLS multiplets serve various comparisons with
other calculations and experiment where fine structure transi-
tions can not be resolved. The level indexIi for each energy
level in the table is given next to theg-value (e.g.gi : Ii) for a
easy pointer to the completef -file.

BPRM coefficients A are compared with other calcula-
tions in Table 6, and with available NIST data. Safronova
et al. (2001) obtained data of E1, E2, M1 and M2 type for
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Table 4.Sample set ofg f -values and electric dipole transition proba-
bilities A for Fe in Jπ order. Notationa± b meansa× 10±b.

26 10

0 0 2 1

20 47 Ei (Ry) Ej (Ry) g fL S Aji · s
1 1 −9.28398+1 −3.93186+1 −1.225−1 6.866−3 9.396E+11

1 2 −9.28398+1 −3.84325+1 −1.010−1 5.569−3 8.005E+11

1 3 −9.28398+1 −3.37551+1 −8.149−3 4.138−4 7.617E+10

1 4 −9.28398+1 −3.29952+1 −6.222−1 3.119−2 5.967E+12

1 5 −9.28398+1 −3.19937+1 −2.321 1.144−1 2.301E+13

1 6 −9.28398+1 −2.70352+1 −3.511−2 1.601−3 4.070E+11

1 7 −9.28398+1 −2.67131+1 −2.843−1 1.290−2 3.328E+12

1 8 −9.28398+1 −2.08737+1 −2.289−2 9.542−4 3.175E+11

1 9 −9.28398+1 −1.99631+1 −1.761−2 7.249−4 2.504E+11

1 10 −9.28398+1 −1.87276+1 −3.289−3 1.331−4 4.837E+10

1 11 −9.28398+1 −1.84077+1 −3.601−1 1.451−2 5.341E+12

1 12 −9.28398+1 −1.75506+1 −3.993−1 1.591−2 6.059E+12

1 13 −9.28398+1 −1.29712+1 −1.004−2 3.771−4 1.715E+11

1 14 −9.28398+1 −1.20521+1 −1.220−2 4.530−4 2.133E+11

1 15 −9.28398+1 −1.19108+1 −1.138−3 4.219−5 1.996E+10

1 16 −9.28398+1 −1.17427+1 −1.935−1 7.158−3 3.407E+12

1 17 −9.28398+1 −1.08677+1 −1.488−1 5.446−3 2.678E+12

1 18 −9.28398+1 −1.01812+1 −1.075−2 3.902−4 1.967E+11

1 19 −9.28398+1 −1.00659+1 −9.202−2 3.335−3 1.688E+12

. . . . . . . . . . . . . . . . . .

transitions 2l − 3l′ of Fe using relativistic many-body per-
turbation theory (MBPT). Present results agree reasonably well
yet with noticeable scatter compared to and also within (a)–(e),
in particular for the decay of level 17 (for labels see Table 7):
2s22p53d3Po

1−2s22p6 1S0. Because of poorer consistency for
intercombination transitions – as would happen when varying
the strength of multiplet mixing – one might go for inclusion
of all magnetic interactions among the valence electrons: after
all there are 8 of them in this sequence, while BPRM ignores
magnetic 2-body contributions (accounting only for interaction
with the two closed-shell 1s electrons). The result marked by‡
looks encouraging – until one repeats the same short calcu-
lation without such terms: 8.27 × 1010/s looks sobering be-
sides the tabulated 8.89×1010/s. This way Bhatia & Doschek’s
(1992) coefficient falls into place, leaving the Cornille et al.
result – also from– the odd case out. The
blanks for Cornille et al. in the last two transitions are not inci-
dental, since they did not include configurations 2s2p63l which
become degenerate to 2s22p53l′ in the highZ limit, according
to Layzer’s scaling laws (Layzer 1959), that it is essential to in-
clude all the configurations of the complex in order to correctly
reproduce the terms of theZ-expansion of the non-relativistic
energy. FS splitting of course is a different matter, and if 2-body

magnetic interaction with the closed K shell is omitted the ef-
fective spin-orbit parameterζ2p = 0.620 Ry (0.1484·Z4/cm)
goes up to the “bare” value of 0.684 Ry (or 0.1644·Z4/cm);
for the effective spin-orbit parameterζ to orbitalsl, see Blume
& Watson (1962), Eissner et al. (1974), also Eq. (4). So much
about a mute point of interpreting scatter. For electric dipole
transitions the BPRM code in its present state is as good as
other good approaches but readily delivering far larger data sets
than anything to date.

Among forbidden transitions, discussed in the next section,
there is one class for which it is obvious that one must draw
very different conclusions, that is for transitions between levels
of a FS multiplet: to start with, the splitting changes signifi-
cantly on including 2-body FS contributions.

4.3. Forbidden transitions M1, E2, and M2, E3

We extend the behavioural study of computed radiative decay
in Table 8 to aselectionof forbidden transitions; acomplete
set will be published in electronic format, available from the
CDS library for 2312 transitions between the 89 Fe-levels.
Table 8 along with Table 7 probes the quality of the target rep-
resentations – especially term coupling, which is crucial in the
collisional application (CPE02). Larger uncertainties are con-
fined to intercombination lines, but there they can increase un-
comfortably with higher radiative multipole type. Moreover
the table assesses the influence of 2-body finestructure con-
tributions neglected in the current BPRM work. Magnetic in-
teraction between valence shell electrons is always present in
the MCDF work withGRASP, activated for the-
 column + but switched off in −: follow the trend
from − via + to full relativistic MCDF.

At wave lengths of 10 Å≈ 911 Å/100 (henceE2
i j = 104 Ry)

Eqs. (16), (17) versus (14), (15) suggest a close look at de-
cay by electric octopole and magnetic quadrupole radiation for
transitions with such a lowest path. We can indeed expect rates
around 106/s, which would be competitive with E2 and M1 de-
cay around Fe withZeff ≈ 20 along the Ne-isoelectronic se-
quence, as the scaling laws show: inserting (7) for Eλ and (11)
for Mλ into the line strength expression (6) yields scaling ofA
asZ8 for both E3 and M2 (andZ6 for E2 and M1); for tran-
sitions within a principal shell (∆n = 0) though scaling of Eλ
drops by a factor ofZ2, and octopole transitions become neg-
ligible; we do not extend this discussion to intercombination
transitions. The E3 results in Table 8 are most satisfactory and
perfectly understood. To start with the two bottom entries, one
of them apparently contradicting this statement, Table 7 iden-
tifies levels 87 and 89 as multiplet mixing companions with
J = 3 to terms 4f3F and1F. Therefore the intercombination
decay of 87 becomes rather sensitive to magnetic coupling,
A converging from right to left as much as one can reason-
ably expect when MCDF works with a slightly different target.
This is borne out by 56, the only other troubling level for E3, as
Table 7 places it marginally differently (unfortunately no exper-
iment has yet decided). M2 is a different matter, a factor of 2.5
in the poor case (18,1) difficult to reconcile with the lowest or-
der radiative operator as adopted in.
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Table 5.Dipole allowed and intercombination transitions in Fe. The calculated transition energies are replaced byobservedenergies. The
g:I indices refer to the statistical weight:energy level index in the raw data file. The notationa(b) meansa× 10b.

Ci Cj Ti Tj gi :Ii g j :I j λi j /Å f A· s
2p6 2s22p53s 1Se 3Po 1:1 3:1 17.1 1.223(−1) 9.35(11)

2p6 2s22p63s 1Se 1Po 1:1 3:2 16.8 1.008(−1) 7.96(11)

2p6 2s22p53d 1Se 3Po 1:1 3:3 15.4 8.136(−3) 7.58(10)

2p6 2s22p53d 1Se 3Do 1:1 3:4 15.3 6.208(−1) 5.93(12)

2p6 2s22p53d 1Se 1Po 1:1 3:5 15.0 2.314 2.28(13)

2p6 2s2p63p 1Se 3Po 1:1 3:6 13.9 3.501(−2) 4.03(11)

2p6 2s2p63p 1Se 1Po 1:1 3:7 13.8 2.835(−1) 3.30(12)

2p6 2s22p54s 1Se 3Po 1:1 3:8 12.7 2.286(−2) 3.16(11)

2p6 2s22p54s 1Se 1Po 1:1 3:9 12.5 1.758(−2) 2.49(11)

2p6 2s22p54d 1Se 3Po 1:1 3:10 12.3 3.281(−3) 4.81(10)

2p6 2s22p54d 1Se 3Do 1:1 3:11 12.3 3.594(−1) 5.31(12)

2p6 2s22p54d 1Se 1Po 1:1 3:12 12.1 3.987(−1) 6.03(12)

2p6 2s22p55s 1Se 3Po 1:1 3:13 11.4 1.003(−2) 1.71(11)

2p6 2s22p55s 1Se 1Po 1:1 3:14 11.3 1.219(−2) 2.13(11)

2p6 2s22p55d 1Se 3Po 1:1 3:15 11.3 1.135(−3) 1.98(10)

2p6 2s22p55d 1Se 3Do 1:1 3:16 11.3 1.932(−1) 3.39(12)

2p6 2s22p55d 1Se 1Po 1:1 3:17 11.1 1.486(−1) 2.67(12)

2p6 2s2p64p 1Se 3Po 1:1 3:18 11.0 1.073(−2) 1.96(11)

2p6 2s2p64p 1Se 1Po 1:1 3:19 11.0 9.190(−2) 1.68(12)

2p53s 2s22p53p 3Po 3Pe 3:1 1:2 296.0 3.354(−2) 7.66(09)
2p53s 2s22p53p 3Po 3Pe 3:1 3:4 262.7 5.893(−5) 5.70(06)
2p53s 2s22p53p 3Po 3Pe 5:1 3:4 252.5 4.985(−3) 8.69(08)
2p53s 2s22p53p 3Po 3Pe 3:1 5:2 340.4 9.075(−2) 3.13(09)
2p53s 2s22p53p 3Po 3Pe 5:1 5:2 323.5 6.913(−2) 4.41(09)
LS 3Po 3Pe 9 9 8.959(−2) 6.71(09)

2p63s 2s22p53p 1Po 3Pe 3:2 1:2 413.8 9.557(−3) 1.12(09)
2p63s 2s22p53p 1Po 3Pe 3:2 3:4 351.6 4.162(−2) 2.25(09)
2p63s 2s22p53p 1Po 3Pe 3:2 5:2 506.3 1.464(−3) 2.29(07)

2p53p 2s22p53d 3Pe 3Po 1:2 3:3 369.5 9.560(−3) 1.56(08)
2p53p 2s22p53d 3Pe 3Po 3:4 1:2 457.5 1.443(−3) 1.38(08)
2p53p 2s22p53d 3Pe 3Po 3:4 3:3 439.0 1.262(−3) 4.37(07)
2p53p 2s22p53d 3Pe 3Po 3:4 5:2 415.7 5.280(−4) 1.22(07)
2p53p 2s22p53d 3Pe 3Po 5:2 3:3 317.7 9.904(−3) 1.09(09)
2p53p 2s22p53d 3Pe 3Po 5:2 5:2 305.4 5.093(−2) 3.64(09)
LS 3Pe 3Po 9 9 3.145(−2) 1.64(09)

2p53p 2s22p53d 3Pe 3Do 1:2 3:4 285.5 2.019(−1) 5.51(09)
2p53p 2s22p53d 3Pe 3Do 3:4 3:4 325.2 2.756(−3) 1.74(08)
2p53p 2s22p53d 3Pe 3Do 3:4 5:5 279.9 1.945(−1) 9.93(09)
2p53p 2s22p53d 3Pe 3Do 5:2 3:4 253.6 1.599(−5) 2.76(06)
2p53p 2s22p53d 3Pe 3Do 5:2 5:5 225.1 4.933(−3) 6.49(08)
2p53p 2s22p53d 3Pe 3Do 5:2 7:2 280.1 1.573(−1) 9.55(09)
LS 3Pe 3Do 9 15 1.887(−1) 1.08(10)

2p53p 2s22p53d 3Pe 1Po 1:2 3:5 218.3 1.528(−2) 7.13(08)
2p53p 2s22p53d 3Pe 1Po 3:4 3:5 240.8 2.555(−2) 2.94(09)
2p53p 2s22p53d 3Pe 1Po 5:2 3:5 199.1 1.793(−4) 5.02(07)

2p53p 2s2p63p 3Pe 3Po 1:2 3:6 100.3 3.128(−2) 6.91(09)
2p53p 2s2p63p 3Pe 3Po 3:4 3:6 104.8 2.500(−3) 1.52(09)
2p53p 2s2p63p 3Pe 3Po 3:4 3:6 104.8 2.500(−3) 1.52(09)
2p53p 2s2p63p 3Pe 3Po 5:2 3:6 96.1 2.663(−3) 3.21(09)
LS 3Pe 3Po 9 9 5.822(−3) 3.94(09)
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Table 6. Comparison of BPRM calculations for decayAE1( j,1) to the
Fe ground stateC1T1 = 2s22p6 1S0 with other work.

j: Cj Tj A(s−1)
BPRM Others

3: 2s22p53s 1Po
1 7.96(11) 8.28(11)a,8.01(11)b,7.75(11)c

8.38(11)d,8.30(11)e,9.40(11)‡

5: 2s22p53s 3Po
1 9.35(11) 9.76(11)a,9.44(11)b,9.09(11)c

9.63(11)d,9.34(11)e,8.00(11)‡

17: 2s22p53d 3Po
1 7.58(10) 9.19(10)a,8.27(10)b,7.77(10)c

9.42(10)d,9.00(10)e,8.89(10)‡

23: 2s22p53d 3Do
1 5.93(12) 6.33(12)a,5.68(12)b,5.23(12)c

6.01(12)d,6.01(12)e,5.72(12)‡

27: 2s22p53d 1Po
1 2.28(13) 2.24(13)a,2.64(13)b,2.44(13)c

2.47(13)d,2.28(13)e,2.52(13)‡

31: 2s2p63p 3Po
1 4.03(11) 4.51(11)a,3.66(11)b

4.12(11)d,3.40(11)e,3.52(11)‡

33: 2s2p63p 1Po
1 3.30(12) 3.34(12)a,3.21(12)b

3.29(12)d,3.30(12)e,3.25(12)‡

a Safronova et al. (2001),b Bhatia & Doschek (1992),

c Cornille et al. (1994),d present MCDF,e NIST,

‡  with all magnetic FS-components.

For E2 vs. M1 the picture turns very varied as early as
for ∆n , 0: distinguishing between intercombination tran-
sitions (with factors likeα2Z2 and α2Z3) and direct transi-
tion becomes a more persistent companion. For direct transi-
tions between main shells bothA scale asZ6, the time coeffi-
cient favouring E2. Next come radiative BP corrections to M1
remembered from the classical case of 1s2s3S decay. We ver-
ified the Bhatia and Doschek entries, converting toA with-
out those corrections with the help of an expedient tool:
 prints both the full line strengthSM1 and
BP-deficientSM1

0 . Then A(9, 1) drops to less than its tenth,
from its + result 3.31 × 103 s−1 – albeit only half what
MCDF is telling: greater discrepancies are associated with dif-
ferences between SS+ and SS− results and rather crowded fields
in Table 7 for the respectiveJπ, so BP may be stretched beyond
its limits. The trends for E2 type transitions look perfect.

For electric dipole transitions, both direct and spin-flip,
Table 8 givesA in velocity form as a second entry to the more
firmly established length results, as a measure of good target
description (with the proviso after Eq. (7)). They compare en-
couragingly for the EIE work.

Turning briefly towards astrophysical and laboratory impli-
cations from Table 8, apart from selected spontaneous emis-
sion coefficients for dipole-allowed transitions it gives results
for magnetic dipole and electric quadrupole radiation – and
some magnetic quadrupole and electric octopole transitions of
the same magnitude of some 106 s−1: of course this high multi-
pole decay mode can compete only for transitions with very
short wave length, i.e. to the ground state. It may influence
the modeling of line emissions. In astronomy and in labora-
tory photoionized plasmas the M2 decay from level 2 has long
been observed as a prominent line. The population of level 2
is fed by cascading from 2p53s, 2p53p, and 2p53d and higher
configurations. Accurate M2 transition probabilities are the key
to modeling this line. Moreover it has important plasma diag-
nostics potential.

5. Conclusions

From large-scale state-of-the-art calculations in Breit-Pauli ap-
proximation we obtain energy levels with principal quantum
number up ton = 10 and radiative transition probabilities
of Fe. All levels have been identified in spectroscopic no-
tation and checked for completeness. The set of results far ex-
ceeds the currently available experimental and theoretical data.

Radiative data for most electric dipole transions as well as
level positions agree within 10% and in most cases far better
with available theoretical and experimental work of quality.
This indicates that for these highly charged ions higher order
relativistic and QED effects omitted in the BPRM calculations
may lead to an error not exceeding the estimated uncertainty.

We have obtained a consistent set of coefficientsA for E2
and M1 type transitions and compared our
and MCDF calculations with other calculations in the litera-
ture. Most results forAE2 andAM1 lie well inside 20–30% of
uncertainty. However, numerically very small coefficients can
differ from 50% to a factor of two: M2 and in particular E3
results are highly sensitive to the physics included and nu-
merics (e.g. cancellation effects and numerical instabilities).
Large differences are found between the
and MCDF calculations. Especially the magnetic quadrupole
results are hard to assess, suggesting further study of this issue.

All data are available electronically. Part of thef -values
have been reprocessed using available observed energies for
better accuracy. The new results should be particularly useful
for the analysis of X-ray and Extreme Ultraviolet spectra from
astrophysical and laboratory sources where non-local thermo-
dynamic equilibrium (NLTE) atomic models with many ex-
cited levels are needed.

Acknowledgements.This work was partially supported by U.S.
National Science Foundation (AST-9870089) and the NASA ADP
program; WE enjoyed part-support by Sonderforschungsbereich 392
of the German Research Council. The computational work was largely
carried out on the Cray T94 and Cray SV1 at the Ohio Supercomputer
Center in Columbus, Ohio.



800 Sultana N. Nahar et al.: Transition probabilities for Fe. LIII.

Table 7. The first 89 fine-structuren = 2, 3 and 4 levels included in the EIE calculation by Chen et al. 2003: comparison of calculated and
observed energies in Rydbergs for Fe; “obs” data are observed values from NIST; the entries “” (−/+: without/with inclusion of
2-body magnetic components) and the entries “” are from and calculations respectively.

i SLJ (jj) J obs − ss+  BPRM

1 2s22p6 1
S0 (0,0)0 0.0 0.0 0.0 0.0 0.0

2 2s22p53s3Po
2 (3/2,1/2)o2 53.2965 53.3622 53.3666 53.1684 53.3821

3 3s1Po
1 (3/2,1/2)o1 53.43 53.5044 53.5091 53.3100 53.5211

4 3s3Po
0 (1/2,1/2)o0 54.2268 54.2865 54.2865 54.0957 54.3190

5 3s3Po
1 (1/2,1/2)o1 54.3139 54.3791 54.3697 54.1851 54.4074

6 3p3S1 (3/2,1/2)1 55.5217 55.5686 55.5735 55.3963 55.6001
7 3p3D2 (3/2,1/2)2 55.7787 55.8397 55.8455 55.6606 55.8654
8 3p3D3 (3/2,3/2)3 55.8974 55.9463 55.9494 55.7791 55.9857
9 3p1P1 (3/2,3/2)1 55.9804 56.0338 56.0404 55.8654 56.7674

10 3p3P2 (3/2,3/2)2 56.1137 56.1597 56.1642 55.9950 56.2007
11 3p3P0 (3/2,3/2)0 56.5155 56.5821 56.5809 56.4050 56.2221
12 3p3D1 (1/2,1/2)1 56.6672 56.7288 56.7211 56.5495 56.0669
13 3p3P1 (1/2,3/2)1 56.9060 56.9499 56.9420 56.7855 57.0024
14 3p1D2 (1/2,3/2)2 56.9336 56.9817 56.9703 56.8135 57.0339
15 3p1S0 (1/2,1/2)0 57.8894 58.0639 58.0619 57.9308 58.0358

16 3d3Po
0 (3/2,3/2)o0 58.8982 58.9407 58.9578 58.7738 59.0057

17 3d3Po
1 (3/2,3/2)o1 58.981 59.0188 59.0289 58.8454 59.0846

18 3d3Po
2 (3/2,5/2)o2 59.0976 59.1651 59.1659 58.9826 59.2305

19 3d3Fo
4 (3/2,5/2)o4 59.1041 59.1821 59.1799 58.9901 59.2435

20 3d3Fo
3 (3/2,3/2)o3 59.1611 59.2240 59.2347 59.0498 59.2820

21 3d1Do
2 (3/2,3/2)o2 59.2875 59.3513 59.3630 59.1797 59.4106

22 3d3Do
3 (3/2,5/2)o3 59.3665 59.4471 59.4466 59.2598 59.5054

23 3d3Do
1 (3/2,5/2)o1 59.708 59.7865 59.7907 59.6082 59.8446

24 3d3Fo
2 (1/2,3/2)o2 60.0876 60.1438 60.1431 59.9749 60.2171

25 3d3Do
2 (1/2,5/2)o2 60.1617 60.2179 60.2045 60.0344 60.2940

26 3d1Fo
3 (1/2,5/2)o3 60.197 60.2627 60.2484 60.0754 60.3337

27 3d1Po
1 (1/2,3/2)o1 60.6903 60.8225 60.8212 60.6279 60.8461

28 2s2p63s3S1 (1/2,1/2)1 63.3306 63.3306 63.2125 63.3658
29 3s1S0 (1/2,1/2)0 63.7925 63.7925 63.6986 63.8049
30 3p3Po

0 (1/2,1/2)o0 65.7338 65.7377 65.6346 65.7726
31 3p3Po

1 (1/2,1/2)o1 65.601 65.7687 65.7703 65.6676 65.8047
32 3p3Po

2 (1/2,3/2)o2 65.9299 65.9285 65.8380 65.9792
33 3p1Po

1 (1/2,3/2)o1 65.923 66.0723 66.0718 65.9782 66.1267
34 3d3D1 (1/2,3/2)1 69.0162 69.0269 68.9221 69.0744
35 3d3D2 (1/2,3/2)2 69.0351 69.0386 68.9323 69.0920
36 3d3D3 (1/2,5/2)3 69.0672 69.0606 68.9518 69.1237
37 3d1D2 (1/2,5/2)2 69.282 69.4358 69.4352 69.3247 69.4813

38 2s22p54s3Po
2 71.8710 71.8754 71.6517

39 2s22p54s1Po
2 71.860 71.9150 71.9197 71.6983

...

55 3Po
2 74.0927 74.1062 73.9033

56 2s22p54d 3Fo
3 (3/2,3/2)o3 74.1082 74.1151 73.8994

57 1Do
2 74.1526 74.1595 73.9456

...
85 2s2p64d 1D2 (1/2,5/2)2 84.0504 84.0501 83.9258
86 4f 3Fo

2 (1/2,5/2)o2 84.4770 84.4789 84.3462
87 4f 3Fo

3 (1/2,5/2)o3 84.4793 84.4801 84.3481
88 4f 3Fo

4 (1/2,7/2)o4 84.4853 84.4839 84.3522
89 4f 1Fo

3 (1/2,7/2)o3 84.4957 84.4953 84.3621

∞ 2s22p5 2Po
3/2∞ l 92.760 — 92.8398

SS calculations with statistical model scaling factorsλnl = 1.3835 1.1506 1.0837 1.0564 1.0175 1.0390 1.0511 1.0177 1.0191 1.0755
in 1s 2s 2p. . . 4f order.
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Table 8. Selected transition probabilitiesA· s of Fe , for elec-
tric dipole E1 type transitions also in velocity formulation as sec-
ond entries, computed bywith and without 2-body
FS-terms (columns+ and−) and MCDF, and miscellaneous re-
sults: E1 – from BPRM, M1 –AM1· s by Bhatia & Doschek (1992)
employing (11) rather than full (10), E2 – from BPRM. The quantity
aeb stands fora× 10b.

i j type  + − misc.

3 1 E1 9.63e11 9.39e11 9.42e11 9.39e11
9.24e11 8.43e11 8.51e11 9.44e11

5 1 E1 8.38e11 8.00e11 7.98e11 8.01e11
8.02e11 7.76e11 7.73e11 8.08e11

17 1 E1 9.42e10 8.89e10 8.23e10 7.61e10
8.73e10 8.27e10 7.65e10 7.49e10

23 1 E1 6.01e12 5.72e12 5.73e12 5.96e12
5.65e12 5.39e12 5.41e12 5.69e12

27 1 E1 2.47e13 2.52e13 2.52e13 2.30e13
2.32e13 2.40e13 2.41e13 2.19e13

33 1 E1 3.29e12 3.25e12 3.25e12 3.32e12
3.30e12 3.39e12 3.38e12 3.49e12

6 1 M1 1.80e5 1.74e5 1.61e5 4.96e+4
9 1 M1 6.81e3 3.31e3 4.43e3 5.94e+4

12 1 M1 4.24e3 4.98e3 4.34e3 2.20e+3
13 1 M1 2.03e5 1.77e5 1.79e5 1.99e+5
28 1 M1 1.93e4 1.97e4 1.76e4 2.33e+1
34 1 M1 2.10e3 5.31e3 8.25e3 1.67e−1

7 1 E2 5.24e08 5.14e08 5.16e08 5.15e08
10 1 E2 5.63e08 5.62e08 5.60e08 5.52e08
14 1 E2 6.77e08 6.63e08 6.62e08 6.69e08
35 1 E2 1.86e07 2.52e07 4.01e07 5.85e07
37 1 E2 1.09e10 1.08e10 1.08e10 1.10e10
85 1 E2 3.00e09 2.98e09 2.98e09

2 1 M2 2.25e5 2.17e5 2.17e5
18 1 M2 6.16e6 2.58e6 2.63e6
21 1 M2 1.13e6 6.27e5 5.44e5
24 1 M2 4.47e5 8.28e5 8.79e5
25 1 M2 2.73e5 4.15e6 4.14e6
32 1 M2 8.44e5 8.02e5 8.02e5

20 1 E3 2.83e5 2.82e5 2.85e5
22 1 E3 3.52e5 3.61e5 3.60e5
26 1 E3 4.00e5 3.94e5 3.93e5
56 1 E3 3.87e4 1.48e5 1.49e5
87 1 E3 1.23e5 1.92e5 2.75e5
89 1 E3 3.36e6 3.64e6 3.56e6
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