
A&A 430, 331–341 (2005)
DOI: 10.1051/0004-6361:20041358
c© ESO 2005

Astronomy
&

Astrophysics

Atomic data from the IRON Project�

LVI. Electron excitation of Be-like Fe XXIII for the n = 2, 3, 4 configurations

M. C. Chidichimo1 ,��, G. Del Zanna1, H. E. Mason1, N. R. Badnell2, J. A. Tully3, and K. A. Berrington4

1 Department of Applied Mathematics and Theoretical Physics, The Centre for Mathematical Sciences, Wilberforce Road,
Cambridge CB3 OWA, Cambridge, UK
e-mail: G.Del-Zanna@damtp.cam.ac.uk

2 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
3 Département Cassiopée, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
4 School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK

Received 26 May 2004 / Accepted 10 August 2004

Abstract. Collision strengths for electron induced transitions in the beryllium-like ion Fe+22 are calculated using the in-
termediate coupling frame transformation (ICFT) version of the R-matrix programs. Our target has 98 fine structure states
1s2 nl n′l′ S LJ corresponding to n = 2 and n′ = 2, 3, 4. The present calculation is for electron impact energies in the range 3.15
to 380 Ry. When T exceeds about ten million degrees one needs to take account of contributions to the thermally averaged colli-
sion strength Υ coming from electrons with energies in excess of 380 Ry. We discuss a way of allowing for these contributions.
Values of Υ for all the transitions between the ground state and the excited states 1s2 2l n l n′l′ S ′L′J′, with n′ = 2, 3, 4 are tabu-
lated as a function of log T . The temperature range 6.3 ≤ log T ≤ 8.1 is centred on log T = 7.1 which is approximately where
Fe+22 has maximum abundance in ionization equilibrium. To the best of our knowledge these are the first R-matrix calculations
for Fe+22 for excitations to the n = 3, 4 levels. Good agreement with previous distored-wave calculations is found. However, the
resonance contributions have an important effect on the effective collision strengths and in turn on the level populations.
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1. Introduction

The present calculation has been carried out as part of the in-
ternational IRON Project (Hummer et al. 1993), whose aim
is to obtain reliable rate coefficients for collisional excitation
of fine-structure transitions in positive ions induced by elec-
tron impact. In a previous calculation, Chidichimo et al. (1999)
obtained level energies, oscillator strengths and effective colli-
sions strengths for the n = 2 complex of Fe+22. They also in-
cluded a thorough discussion of collision calculations devoted
to this ion up to the time of their own investigation. We will

� Full Tables 2, 4 and 6 are only available in electronic form at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/331.
The full datasets of wavelengths and g f values (Table 4) and of ef-
fective collision strengths (Table 7) are only available at the
same address. The same data are also available at the TIPbase
(http://vizier.u-strasbg.fr/tipbase/home.html) database
and as an ‘adf04’ file at the Oak Ridge National Laboratory’s database
via http://www-cfadc.phy.ornl.gov/
�� Permanent address: Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

refer to this paper as Paper I. Previous published calculations
for transitions to the n = 3 complex of Fe+22 were carried out
in the non-relativistic and relativistic distorted wave (DW) ap-
proximation.

Unpublished non-relativistic DW results are available for
transitions up to n = 4 (Bhatia, priv. comm.).

In the present paper we present new atomic data for transi-
tions up to the n = 2, 3, 4 complex in Fe+22. The data for the
n = 2 complex represent a revision of the data published in
Paper I. These are the first R-matrix calculations for this ion
for excitations to the n = 3 levels, and the first published cal-
culations to n = 4. A complete list of IRON Project published
papers and those in press is available on-line1.

This work has been carried out as part of the UK RmaX
network, which focuses on new atomic data for X ray spectra
in astrophysics. Earlier work by the RmaX network includes
ICFT calculations up to n = 4 for C-like (Badnell & Griffin
2001) and B-like (Badnell et al. 2001) Fe ions.

Fe+22 n = 2 → n′ = 3 and n = 2 → n′ = 4
spectral lines have been observed in solar flares (see, e.g.,

1 http://www.usm.uni-muenchen.de/people/ip/
iron-project.html
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Neupert et al. 1967; Neupert et al. 1973; Doschek et al. 1973;
McKenzie et al. 1985; Fawcett et al. 1987), and are observed
with the current X-ray missions such as Chandra and XMM
in spectra from a variety of different sources. Fe+22 line ratios
have a temperature sensitivity (as shown by Bhatia & Mason
1981), and are therefore a powerful diagnostic tool for a variety
astrophysical applications. This paper focuses on the atomic
calculations, while a follow-up paper (Del Zanna et al. 2004)
will deal with line identifications and astrophysical applica-
tions.

2. Method of calculation and target

In what follows, we outline the steps taken in the present work
which justify our belief that the results given here are the most
reliable Fe+22 rate coefficients currently available. First of all
we were careful to obtain a good target model.

As regards the collision calculation, we have made use of
the R-matrix method (Hummer et al. 1993; Berrington et al.
1995) in conjunction with the intermediate frame coupling
transformation (ICFT) (see Badnell & Griffin 2001; Badnell
et al. 2001).

These R-matrix programs, which are based on approxima-
tions that take into account much of the collision physics re-
sponsible for resonance scattering and relativistic effects, are
widely considered as the most elaborate and accurate ones in
existence for this type of calculation.

2.1. Atomic orbitals for Fe+22

In the present calculation, we used the same radial orbitals as
those given in Paper I (see Table 2, where the numerical param-
eters needed to generate the orbitals are listed). We have used
the 1s, 2s radial orbitals of Clementi & Roetti (1974) while 2p,
3s, 3p, 3d, 4s, 4p, 4d, 4f were obtained by means of the CIV3
code (Hibbert 1975; Hibbert et al. 1991). CIV3 uses analytic ra-
dial orbitals Pnl(r) which are expressed as sums of Slater typer
orbitals as follows:

Pnl =

k∑

j=1

c jnl
(2ζ jnl)I jnl+1/2

[(2I jnl)!]1/2
r I jnl exp(−ζ jnlr).

2.2. Target energy levels

For the collisional calculation, we used all the terms originating
from the 17 configurations included in Table 2 (98 levels up to
n = 4). All 17 configurations in our calculation were treated as
spectroscopic, i.e. there were no extra configurations treated as
correlation. These correlation configurations are not found to
contribute significantly for the highly charged ion Fe+22.

In order to assess how good our target is, we ran various
atomic structure calculations by adding extra configurations,
up to n = 5, to our basic set of configurations. Configurations
involving double promotion from the n = 3, 4, 5 complex were
treated as correlations. These calculations were performed with
the AUTOSTRUCTURE code (Badnell 1997) and the results
are presented in Table 1.

Table 1. Weighted oscillator strength g f (AS), 17 configurations.
Comparison with g f (AS4), including n = 4 correlation configura-
tions; g f (AS5), including n = 5 correlation configurations. The g f ’s
were calculated using AUTOSTRUCTURE.

i − j g f (AS) g f (AS)/g f (AS4) g f (AS)/g f (AS5)
1–13 0.25 1.01 1.02
1–15 0.41 0.98 0.98
1–22 1.3 × 10−2 1.07 1.07
1–25 2.3 × 10−2 1.13 1.14
1–36 5.0 × 10−3 0.90 0.89
1–42 2.0 × 10−4 0.86 0.85
1–46 1.7 × 10−2 0.94 0.93
1–50 2.7 × 10−2 0.98 0.90
1–52 0.13 1.00 0.97
1–62 3.1 × 10−4 1.16 1.47
1–70 2.3 × 10−3 0.97 0.93
1–75 3.0 × 10−4 1.04 1.49
1–87 6.3 × 10−5 0.98 0.94
1–97 4.6 × 10−3 0.96 0.91

First, for consistency, we checked that the energies cal-
culated with AUTOSTRUCTURE were basically (to within
10−4 Ry) the same as those shown in Table 2, which
were calculated with the R-matrix codes. Then, for each
AUTOSTRUCTURE run, we compared the level energies and
the oscillator strengths (or the high-energy limit for the forbid-
den lines) for all the transitions with the values obtained from
the basic set of 17 configurations. We found variations of the
order of 10%, i.e. of the order of the accuracy of the calcula-
tions themselves, thus giving us confidence on the accuracy of
the target wavefunctions.

The theoretical target energies of Fe+22 produced by
the Breit-Pauli branch of the R-matrix code are shown in
Table 2 along with the configuration identification provided by
AUTOSTRUCTURE and the observed energies for some of the
levels taken from Corliss & Sugar (1982) and from the National
Institute of Standards and Technology (NIST) database2. The
good agreement between the theoretical and observed energy
levels gives us confidence in the target description.

There are minor differences between the level energies of
Paper I (see Table 3) and the present calculations. This is ex-
pected since we chose to treat all configurations as spectro-
scopic ones and avoid the inclusion of extra configurations
which were treated as correlation in Paper I. This approach also
leads to a few changes in the level energy order compared to
Paper I (see Table 3).

2.3. The quality of the target

One way of testing the target is to calculate the correspond-
ing oscillator strengths and see how these compare with those
of other investigators and spectroscopic observations of laser-
produced plasmas (Fawcett et al. 1979). Fawcett (1984, 1985)
tabulates weighted oscillator strengths (i.e. g f values) and

2 http://physics.nist.gov
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Table 2. Fe+22 level energies in rydberg units relative to the ground state. Theoretical results from the Breit-Pauli R-matrix program. Observed
results from Corliss & Sugar (1982) assuming 1 Ry = 109737.32 cm−1. % diff is the percentage difference between the theoretical and observed
energies.

Index Theoretical % diff Observed Level Index Theoretical % diff Observed Level

1 0.0000 0.000 2s2s 1S0 50 109.6961 2s4p 3Po
1

2 3.1503 (−0.71) 3.173 2s2p 3Po
0 51 109.8039 2s4p 3Po

2
3 3.4418 (−0.38) 3.455 2s2p 3Po

1 52 109.8492 (+0.09) 109.753 2s4p 1Po
1

4 4.2749 (−0.56) 4.299 2s2p 3Po
2 53 110.1453 (+0.12) 110.017 2s4d 3D1

5 6.8932 (+0.48) 6.860 2s2p 1Po
1 54 110.1605 (+0.12) 110.035 2s4d 3D2

6 8.6932 (−0.22) 8.713 2p2p 3P0 55 110.1876 (+0.09) 110.090 2s4d 3D3

7 9.3240 (−0.39) 9.360 2p2p 3P1 56 110.3691 (+0.12) 110.245 2s4d 1D2

8 9.7658 (−0.00) 9.766 2p2p 3P2 57 110.4055 2s4f 3Fo
2

9 10.9820 (+0.08) 10.973 2p2p 1D2 58 110.4129 2s4f 3Fo
3

10 13.0046 (+0.34) 12.967 2p2p 1S0 59 110.4266 2s4f 3Fo
4

11 81.2795 (+0.29) 81.048 2s3s 3S1 60 110.4728 2s4f 1Fo
3

12 81.9333 2s3s 1S0 61 112.8017 2p4s 3Po
0

13 82.7951 (+0.11) 82.707 2s3p 3Po
1 62 112.8462 2p4s 3Po

1
14 82.7959 2s3p 3Po

0 63 113.2248 2p4p 3D1

15 83.0716 (+0.10) 82.989 2s3p 1Po
1 64 113.4583 2p4p 3P1

16 83.1023 2s3p 3Po
2 65 113.4744 2p4p 3D2

17 83.9218 (+0.12) 83.827 2s3d 3D1 66 113.5026 2p4p 3P0

18 83.9663 (+0.07) 83.919 2s3d 3D2 67 113.6813 2p4d 3Fo
2

19 84.0368 (+0.11) 83.946 2s3d 3D3 68 113.8231 (+0.08) 113.735 2p4d 3Do
2

20 84.6215 (+0.14) 84.502 2s3d 1D2 69 113.8660 (+0.09) 113.763 2p4d 3Fo
3

21 85.2849 (+0.69) 84.702 2p3s 3Po
0 70 113.9168 (+0.11) 113.799 2p4d 3Do

1
22 85.4484 2p3s 3Po

1 71 113.9473 2p4s 3Po
2

23 86.2699 (+0.13) 86.160 2p3p 3D1 72 113.9672 2p4f 3G3

24 86.3840 2p3s 3Po
2 73 113.9976 2p4f 3F2

25 86.8205 (+0.72) 86.297 2p3s 1Po
1 74 114.0051 2p4f 3F3

26 86.8622 (+0.09) 86.789 2p3p 3D2 75 114.0074 2p4s 1Po
1

27 86.8730 2p3p 1P1 76 114.0094 2p4f 3G4

28 87.0882 2p3p 3P0 77 114.4139 2p4p 1P1

29 87.3983 2p3d 3Fo
2 78 114.4753 (+0.06) 114.455 2p4p 3D3

30 87.6784 2p3p 3P1 79 114.4780 2p4p 3P2

31 87.7295 (+0.03) 87.700 2p3p 3D3 80 114.5240 2p4p 3S1

32 87.7924 (+0.10) 87.709 2p3d 3Fo
3 81 114.7018 2p4p 1D2

33 87.9022 2p3p 3S1 82 114.8321 2p4d 3Fo
4

34 87.9075 2p3d 3Do
2 83 114.8322 (+0.04) 114.792 2p4d 1Do

2
35 87.9377 (+0.06) 87.883 2p3p 3P2 84 114.9053 (+0.06) 114.847 2p4d 3Do

3
36 88.0896 (+0.32) 87.819 2p3d 3Do

1 85 114.9579 2p4p 1S0

37 88.5096 (+0.04) 88.475 2p3p 1D2 86 114.9753 (+0.03) 114.947 2p4d 3Po
2

38 88.5924 2p3d 3Fo
4 87 114.9754 (+0.02) 114.956 2p4d 3Po

1
39 88.6862 (+0.98) 87.828 2p3d 1Do

2 88 114.9851 2p4d 3Po
0

40 88.9204 (+0.10) 88.839 2p3d 3Do
3 89 115.0456 2p4f 1F3

41 89.0959 (+0.25) 88.876 2p3d 3Po
2 90 115.0704 2p4f 3F4

42 89.1021 2p3d 3Po
1 91 115.1066 2p4f 3D2

43 89.1230 2p3d 3Po
0 92 115.1119 2p4f 3D3

44 89.2372 2p3p 1S0 93 115.1254 2p4f 3G5

45 89.6743 (+0.19) 89.577 2p3d 1Fo
3 94 115.1478 2p4f 1G4

46 89.7620 (+0.24) 89.559 2p3d 1Po
1 95 115.1587 (+0.05) 115.102 2p4d 1Fo

3
47 109.1071 2s4s 3S1 96 115.1690 2p4f 3D1

48 109.3177 2s4s 1S0 97 115.2017 2p4d 1Po
1

49 109.6805 2s4p 3Po
0 98 115.2087 2p4f 1D2

wavelengths for transitions n = 2→ n′ = 3 in many beryllium-
like ions, including Fe+22. He made use of Robert D. Cowan’s
code, together with the Slater parameter optimisation proce-
dure, which is widely thought to provide reliable benchmark
data. Cowan’s code only provides the length gauge oscillator

strength, which in general is more reliable than the velocity
gauge one.

The full set of wavelengths λ(Å) and transition probabil-
ities A ji(s−1) for all the transitions occurring amongst the 98
levels as calculated with AUTOSTRUCTURE is provided in
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Table 3. Past and present label of energy levels and indexing.

Label Index
1999a 2004

2s3p 3Po
1 14 13

2s3p 3Po
0 13 14

2p3p 3D3 55 31
2p3p 3S1 34 33
2p3d 3Do

2 39 34
2p3d 1Do

2 33 39
2s4d 3D3 31 55
2p4f 3F3 76 74
2p4f 3G4 74 76
2p4p 3D3 79 78
2p4p 3P2 78 79
2p4f 3F4 94 90
2p4f 3D3 93 92
2p4f 3G5 92 93
2p4f 1G4 90 94

a Paper I.

electronic form. Observed energies, applying adjustments to
the LS energies, and refined A-values will be discussed in a
forthcoming paper by Del Zanna et al. (2004). In Table 4 we
compare our g f and wavelength values with those of Bhatia
& Mason (1981), Bhatia & Mason (1986), Guo-Xin & Ong
(1998a), Bhatia et al. (1986), Murakami & Kato (1996), to-
gether with the observed wavelengths from Fawcett et al.
(1979). Guo-Xin & Ong (1998a) used the GRASP code (Parpia
et al. 1996) with a 133-level multiconfiguration Dirack-Fock
expansion, which should provide the most accurate results.
From Table 4 we note that their inclusion of correlation and
higher-order relativistic effects do not seem to play a promi-
nent role in the 1–13 and 1–15 wavelengths, our calculations
and theirs agree within 0.2% with the observed wavelengths.
We also have good agreement, within 10% for the strongest
transitions, between our g f results and theirs. This gives us
confidence in our target.

2.4. The collision and effective collision strengths

Our ultimate aim is to tabulate the temperature-dependent ef-
fective collision strength Υ(i − j), defined by :

Υ(i − j) =
∫ ∞

0
Ω(i − j) exp(−E j/kT ) d(E j/kT )

where E j is the energy of the colliding electron after excita-
tion has occurred and k is the Boltzmann constant. We per-
formed the numerical integration by linearly interpolating the
Ω(i, j) exp(−E j/kT ) data points as suggested by Burgess &
Tully (1992). In order to try and delineate the resonance struc-
ture in the collision strengths we calculated each Ω(i − j) at
116 847 energy points, i.e. with an extremely fine mesh.

For electrons incident with kinetic energies relative to the
ground state of the target less than or equal to 380 Ry we
used the R-matrix method based on the close coupling approx-
imation. This allows us to take account of channel coupling

up to the n = 4 levels. In order to delineate the multitude
of resonance peaks we ran the code at 116 746 values of the
collision energy starting at 3.1521 Ry (relative to the ground
state), and up to 116 Ry. In this resonance region we used an
energy step-length of 2 × 10−6z2 = 9.68 × 10−4 Ry. In the in-
terval 116 < Ei < 382 Ry, in which there are no resonances,
we calculated collision strengths at 101 energy points, with a
step-length of 5.5 × 10−3z2 = 2.662 Ry.

In Paper I, the Breit-Pauli code was run at 7704 values
of the collision energy starting at 3.1521 Ry, relative to the
ground state and going up to 103.05816 Ry. The interval be-
tween 103.05816 and 116 Ry was covered by making a lin-
ear extrapolation backwards using the values of the collision
strength at 116 and 127.5 Ry. Also by an unfortunate and re-
gretful oversight, at low energies the higher partial wave con-
tribution to the collision strength for dipole transitions was not
included3.

The R-matrix code also attends to the crucial issue of a top-
up procedure in order to account for the higher partial waves in
the collision strengths. With increasing energy, more and more
partial waves need to be calculated. Details of how this top-
up was done for C-like (Badnell & Griffin 2001) and B-like
(Badnell et al. 2001) Fe ions are given in those publications.

In the present calculations, in order to ensure convergence
of the expansion, we let the partial wave quantum number J
extend up to J = 41.5 and then carried out a top-up procedure
by estimating the contributions from higher partial waves.

In order to calculate reliable effective collision strengths at
temperatures which are more than about 2 × 107 K, we need
to calculate, or estimate, the value of the collision strengths
Ω(i, j) for energies even higher than 380 Ry, up to several thou-
sand Rydbergs. We extended our R-matrix collision strengths
beyond 382 Ry by using the method of scaling and extrap-
olating the collision strengths to the appropriate high-energy
limits as described in Burgess & Tully (1992). For optically al-
lowed transitions, the high-energy limits are directly obtained
from the oscillator strengths. We used the gf values calculated
with AUTOSTRUCTURE (see Table 4). For optically forbid-
den transitions between levels with the same parity and spin
we calculated the high-energy Born limits in the manner de-
scribed by Burgess et al. (1997). For optically forbidden inter-
system transitions we used a comparable method developed by
one of us (MCC) (see Appendix, Chidichimo et al. 2003). NRB
has included this method in his AUTOSTRUCTURE code. The
high-energy limits for the optically forbidden lines used for the
extrapolation procedure are given in Table 5.

We developed an IDL graphical interactive program
(a modified form (GDZ) of the codes used by the CHIANTI
team) to inspect visually all the data. It is based on the pro-
gram OmeUps of Burgess & Tully (1992), whereby spline fits
are performed on the 101 Ω(i − j) data points and the high-
energy limit (see Fig. 2). We then perform an interpolation to
obtainΩ(i, j) values at energies ranging from 382 Ry to 106 Ry,
which we deem sufficient for the purpose of thermal averaging.
The effective collision strengthΥ(i− j) are then calculated. This
procedure gives added reliability at high temperatures.

3 This fact was brought to our attention by Dr. C. P. Ballance.
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Table 4. Fe+22: comparing the present wavelengths λ(R) and weighted oscillator strengths g f (R) from AUTOSTRUCTURE with those of
Bathia & Mason (1981, 1986), λ(BM) and g f (BM); Bhatia et al. (1986), λ(BFS); Fawcett (1984), λ(F) and g f (F); Sampson et al. (1984);
g f (SGC); Murakami & Kato (1996), λ(MK); Guo-Xin & Ong (1998a), λ(GO) and g f (GO); Fawcett’s laboratory measurements (Fawcett et al.
1979), λ(Exp). Wavelengths are in Å.

λ(R) λ(BM) λ(BFS) λ(F) λ(MK) λ(GO) λ(Exp) g f (R) g f (BM) g f (F) g f (SGC) g f (GO) Transition

11.0063 11.00 11.018 11.017 11.006 11.018 11.022 2.525−1 2.4−1 2.7−1 2.4−1 2.679−1 1 − 13
10.9697 10.97 10.978 10.979 10.966 10.979 10.983 4.092−1 4.06−1 4.5−1 4.7−1 4.110−1 1 − 15

10.6645 1.297−2 1.290 −2 1 − 22
10.4960 2.342−2 2.198 −2 1 − 25

10.3448 5.025−3 5.810 −3 1 − 36
10.2272 2.001−4 2.336 −4 1 − 42
10.1520 1.745−2 1.932 −2 1 − 46

8.3072 8.3059 8.316 2.673−2 1 − 50
8.2956 8.2934 8.303 1.339−1 1 − 52

8.0753 3.112−4 1 − 62
7.9931 2.987−4 1 − 75

7.9994 2.347−3 1 − 70

7.9258 6.297−5 1 − 87
7.9102 4.574−3 1 − 97

Table 5. High energy Born limits for forbidden transitions (1.640−2 ≡
1.640 × 10−2).

i − j Ω(i − j) i − j Ω(i − j)

1−12 1.640−2 1−60 2.573−3

1−18 2.115−4 1−65 4.455−6

1−20 4.784−2 1−66 1.050−5

1−26 9.233−5 1−69 8.712−6

1−28 5.990−6 1−73 3.922−5

1−32 2.413−5 1−76 5.013−6

1−35 1.099−4 1−79 2.314−6

1−37 2.369−4 1−81 6.350−6

1−40 8.954−6 1−84 1.230−6

1−44 3.779−5 1−85 2.907−5

1−45 1.548−4 1−90 1.864−7

1−48 2.995−3 1−91 1.338−5

1−54 6.059−5 1−94 7.422−6

1−56 7.435−3 1−95 1.964−5

1−58 7.548−5 1−98 4.049−5

3. New collisional data

Collision strengthsΩ(i− j) between all 4753 transitions among
the 98 levels were calculated.

Thermal averaging of the collision strengths was done us-
ing the linear interpolation method described by Burgess &
Tully (1992). The effective collision strengths Υ were calcu-
lated for the temperature range 6.3 ≤ log T ≤ 8.1, centred on
the temperature where Fe+22 is abundant under conditions of
coronal ionization equilibrium (see, e.g., Arnaud & Raymond
1992). For temperatures below five million degrees the abun-
dance of Fe+22 will be negligible in equilibrium conditions.
Astrophysical situations may exist where Fe+22 is abundant at

temperatures lower than this; in these cases one would need to
extend the temperature range below 106.3 K.

Tables 6 and 7 present the effective collision strengthsΥ for
excitations from the ground state only, which are the dominant
contributors for astrophysical plasmas (see below). A more
comprehensive dataset, that includes an adf04 file (see ref. for
definition) and collision strengths for excitations from all the
n = 2 states is provided on-line for completeness. Also the data
with the target energies and the A values are available on-line
in ascii form. Other data mentioned in this paper (e.g. collision
strengths) are available upon request from one of the authors
(GDZ).

3.1. Comparisons with previous calculations

For the n = 2 → n′ = 2 transitions, the present effective colli-
sion strengths only differ from the values published in Paper I
by about 10%, with the exception of the 1–6 (2s2 1Se

0–2p2

3Pe
0) and 1–7 (2s2 1Se

0–2p2 3Pe
1) where differences are larger

(up to 60%).

Since these are the first calculations for the n = 2→ n′ = 3
and n = 2 → n′ = 4 transitions that take into account the res-
onance effects, it is interesting to compare both the Ω(i, j) and
Υ(i, j) values with the previous relativistic and non-relativistic
DW results, to assess the importance of the resonances.

3.1.1. Allowed and forbidden n = 2→ n′ = 3, 4
transitions in comparison with DW

We give illustrations of the different types of collision strength
encountered in the present investigation by plotting Ω(i − j)
versus E j, the final electron energy in rydbergs. We included
comparisons with the published collision strengths for the
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Table 6. Fe+22 effective collision strengths Υ(i − j) to n = 2, 3 levels for 6.3 ≤ log T ≤ 8.1. (2.421−3 = 2.421 × 10−3).

i − j 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1

1–2 2.619−3 2.668−3 2.590−3 2.339−3 1.963−3 1.551−3 1.169−3 8.510−4 6.032−4 4.192−4

1–3 1.549−2 1.590−2 1.614−2 1.604−2 1.569−2 1.532−2 1.506−2 1.498−2 1.505−2 1.526−2

1–4 1.269−2 1.303−2 1.269−2 1.145−2 9.595−3 7.564−3 5.689−3 4.132−3 2.924−3 2.029−3

1–5 3.280−1 3.417−1 3.596−1 3.820−1 4.094−1 4.420−1 4.795−1 5.213−1 5.664−1 6.136−1

1–6 1.873−4 2.191−4 2.460−4 2.508−4 2.313−4 1.986−4 1.638−4 1.333−4 1.094−4 9.159−5

1–7 2.564−4 3.038−4 3.370−4 3.329−4 2.920−4 2.328−4 1.732−4 1.228−4 8.424−5 5.654−5

1–8 7.381−4 8.287−4 8.889−4 8.869−4 8.292−4 7.477−4 6.700−4 6.092−4 5.670−4 5.400−4

1–9 1.262−3 1.365−3 1.426−3 1.422−3 1.366−3 1.294−3 1.232−3 1.192−3 1.171−3 1.164−3

1–10 8.662−4 9.585−4 1.012−3 9.971−4 9.236−4 8.223−4 7.190−4 6.272−4 5.515−4 4.923−4

1–11 2.916−3 2.275−3 1.759−3 1.346−3 1.018−3 7.587−4 5.567−4 4.015−4 2.849−4 1.993−4

1–12 1.344−2 1.338−2 1.340−2 1.352−2 1.376−2 1.409−2 1.448−2 1.487−2 1.523−2 1.554−2

1–13 5.015−3 5.060−3 5.278−3 5.760−3 6.598−3 7.873−3 9.648−3 1.195−2 1.478−2 1.810−2

1–14 4.793−4 4.202−4 3.547−4 2.897−4 2.298−4 1.771−4 1.327−4 9.685−5 6.902−5 4.825−5

1–15 7.037−3 7.256−3 7.735−3 8.622−3 1.007−2 1.221−2 1.514−2 1.892−2 2.354−2 2.894−2

1–16 2.419−3 2.133−3 1.801−3 1.469−3 1.162−3 8.940−4 6.688−4 4.872−4 3.467−4 2.419−4

1–17 1.941−3 1.774−3 1.555−3 1.313−3 1.071−3 8.451−4 6.455−4 4.786−4 3.459−4 2.449−4

1–18 3.354−3 3.079−3 2.713−3 2.310−3 1.909−3 1.539−3 1.215−3 9.473−4 7.370−4 5.788−4

1–19 4.613−3 4.220−3 3.697−3 3.118−3 2.540−3 2.001−3 1.527−3 1.131−3 8.172−4 5.782−4

1–20 1.859−2 1.940−2 2.056−2 2.218−2 2.434−2 2.698−2 2.994−2 3.299−2 3.589−2 3.849−2

1–21 1.862−5 1.604−5 1.286−5 9.767−6 7.157−6 5.119−6 3.597−6 2.492−6 1.706−6 1.157−6

1–22 2.800−4 2.798−4 2.853−4 3.036−4 3.404−4 4.002−4 4.859−4 5.988−4 7.383−4 9.026−4

1–23 1.060−4 9.512−5 8.010−5 6.449−5 5.033−5 3.836−5 2.862−5 2.095−5 1.507−5 1.068−5

1–24 7.468−5 6.212−5 4.879−5 3.669−5 2.678−5 1.915−5 1.347−5 9.345−6 6.402−6 4.339−6

1–25 4.670−4 4.685−4 4.844−4 5.238−4 5.950−4 7.050−4 8.589−4 1.059−3 1.306−3 1.596−3

1–26 1.824−4 1.687−4 1.496−4 1.307−4 1.149−4 1.034−4 9.573−5 9.122−5 8.897−5 8.820−5

1–27 8.631−5 7.675−5 6.327−5 4.953−5 3.751−5 2.778−5 2.023−5 1.452−5 1.030−5 7.229−6

1–28 4.208−5 3.715−5 3.075−5 2.449−5 1.925−5 1.523−5 1.229−5 1.022−5 8.798−6 7.837−6

1–29 1.312−4 1.182−4 9.872−5 7.813−5 5.955−5 4.414−5 3.199−5 2.275−5 1.593−5 1.102−5

1–30 4.841−5 4.076−5 3.282−5 2.558−5 1.952−5 1.467−5 1.089−5 7.993−6 5.801−6 4.167−6

1–31 1.185−4 1.048−4 8.873−5 7.260−5 5.782−5 4.491−5 3.403−5 2.517−5 1.821−5 1.294−5

1–32 1.773−4 1.601−4 1.348−4 1.086−4 8.565−5 6.718−5 5.319−5 4.306−5 3.604−5 3.136−5

1–33 6.090−5 5.078−5 4.015−5 3.056−5 2.267−5 1.652−5 1.186−5 8.403−6 5.885−6 4.081−6

1–34 1.649−4 1.467−4 1.213−4 9.529−5 7.235−5 5.358−5 3.891−5 2.780−5 1.960−5 1.367−5

1–35 1.111−4 1.018−4 9.238−5 8.521−5 8.133−5 8.070−5 8.261−5 8.607−5 9.015−5 9.419−5

1–36 3.165−4 3.139−4 3.105−4 3.124−4 3.234−4 3.454−4 3.792−4 4.246−4 4.808−4 5.466−4

1–37 1.597−4 1.502−4 1.428−4 1.399−4 1.426−4 1.503−4 1.615−4 1.743−4 1.870−4 1.985−4

1–38 1.338−4 1.155−4 9.507−5 7.539−5 5.799−5 4.342−5 3.170−5 2.260−5 1.579−5 1.085−5

1–39 9.381−5 7.808−5 6.213−5 4.784−5 3.601−5 2.667−5 1.952−5 1.415−5 1.018−5 7.265−6

1–40 9.783−5 8.259−5 6.611−5 5.108−5 3.875−5 2.928−5 2.233−5 1.743−5 1.411−5 1.195−5

1–41 1.392−4 1.159−4 9.270−5 7.189−5 5.438−5 4.025−5 2.920−5 2.078−5 1.454−5 1.003−5

1–42 1.063−4 9.017−5 7.437−5 6.051−5 4.923−5 4.061−5 3.442−5 3.038−5 2.815−5 2.740−5

1–43 3.411−5 2.907−5 2.371−5 1.870−5 1.435−5 1.076−5 7.888−6 5.659−6 3.983−6 2.760−6

1–44 9.385−5 8.394−5 7.335−5 6.395−5 5.650−5 5.096−5 4.698−5 4.418−5 4.221−5 4.085−5

1–45 1.679−4 1.529−4 1.377−4 1.257−4 1.181−4 1.150−4 1.153−4 1.182−4 1.227−4 1.278−4

1–46 7.938−4 8.077−4 8.341−4 8.800−4 9.512−4 1.052−3 1.185−3 1.350−3 1.548−3 1.775−3

n = 2 → n′ = 3 transitions, from the papers by Bhatia &
Mason (1981, 1986; hereafter BM). This study provided col-
lision strengths for the n = 2 → n′ = 3 transitions, and used
distorted wave approximations which do not take account of
resonance effects.

Figure 1 shows Ω(1−12), Ω(1−13), Ω(1−15), Ω(1−19),
Ω(1−20), Ω(1−50) and Ω(1−52). The collision strengths
Ω(1−15) and Ω(1−52) correspond to optically allowed tran-
sitions which increase logarithmically with energy as E j → ∞.
The collision strengths Ω(1−13) and Ω(1−50) correspond to

intersystem transitions that behave as though they were opti-
cally allowed owing to the breakdown of LS coupling. For this
to happen the initial and final levels must have different parities
and ∆J = 0,±1, subject to the condition that J = 0 �→ J′ = 0.
Ω(1−12) and Ω(1−20) are forbidden transitions in which nei-
ther the parity nor the spin change. The collision strength for
this type of transition tends to a finite limiting value as E j → ∞.
Ω(1−19) is a forbidden intersystem transition for which the col-
lision strength normally falls off like E−2

j in the high energy
limit.
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Fig. 1. logΩ(i − j) as function of the final energy Ej in rydbergs. Circles indicate the DW values of Bhatia & Mason (1986).
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Table 7. Fe+22 effective collision strengths Υ(i − j) to n = 4 levels for 6.3 ≤ log T ≤ 8.1. (2.421−3 = 2.421 × 10−3).

i − j 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1

1–47 4.092−4 3.497−4 2.986−4 2.518−4 2.077−4 1.666−4 1.296−4 9.797−5 7.218−5 5.208−5

1–48 2.320−3 2.327−3 2.357−3 2.408−3 2.473−3 2.548−3 2.626−3 2.699−3 2.765−3 2.820−3

1–49 1.100−4 9.970−5 8.869−5 7.680−5 6.430−5 5.187−5 4.033−5 3.031−5 2.214−5 1.581−5

1–50 6.792−4 6.721−4 6.819−4 7.128−4 7.714−4 8.645−4 9.973−4 1.173−3 1.390−3 1.646−3

1–51 5.506−4 5.023−4 4.488−4 3.896−4 3.268−4 2.638−4 2.050−4 1.539−4 1.121−4 7.978−5

1–52 1.957−3 2.073−3 2.269−3 2.575−3 3.022−3 3.638−3 4.443−3 5.445−3 6.637−3 8.005−3

1–53 4.497−4 4.179−4 3.786−4 3.324−4 2.815−4 2.294−4 1.800−4 1.366−4 1.007−4 7.253−5

1–54 7.678−4 7.165−4 6.533−4 5.791−4 4.976−4 4.148−4 3.368−4 2.686−4 2.127−4 1.692−4

1–55 1.046−3 9.739−4 8.839−4 7.768−4 6.582−4 5.367−4 4.214−4 3.198−4 2.359−4 1.700−4

1–56 2.937−3 3.078−3 3.276−3 3.543−3 3.884−3 4.289−3 4.736−3 5.191−3 5.625−3 6.013−3

1–57 3.334−4 3.055−4 2.713−4 2.322−4 1.909−4 1.505−4 1.140−4 8.333−5 5.907−5 4.087−5

1–58 4.874−4 4.506−4 4.061−4 3.558−4 3.034−4 2.528−4 2.078−4 1.706−4 1.417−4 1.204−4

1–59 6.012−4 5.511−4 4.895−4 4.190−4 3.444−4 2.715−4 2.057−4 1.504−4 1.068−4 7.407−5

1–60 1.094−3 1.153−3 1.238−3 1.351−3 1.492−3 1.653−3 1.820−3 1.978−3 2.118−3 2.234−3

1–61 2.046−6 1.697−6 1.415−6 1.173−6 9.574−7 7.640−7 5.945−7 4.514−7 3.354−7 2.449−7

1–62 1.467−5 1.356−5 1.298−5 1.286−5 1.320−5 1.404−5 1.541−5 1.734−5 1.980−5 2.274−5

1–63 1.135−5 1.004−5 8.813−6 7.589−6 6.365−6 5.178−6 4.085−6 3.132−6 2.342−6 1.718−6

1–64 9.828−6 8.833−6 7.827−6 6.775−6 5.693−6 4.630−6 3.645−6 2.786−6 2.077−6 1.518−6

1–65 1.498−5 1.374−5 1.249−5 1.120−5 9.908−6 8.702−6 7.647−6 6.783−6 6.113−6 5.615−6

1–66 1.098−5 1.036−5 9.954−6 9.694−6 9.538−6 9.465−6 9.463−6 9.521−6 9.624−6 9.755−6

1–67 1.962−5 1.805−5 1.617−5 1.402−5 1.171−5 9.396−6 7.257−6 5.414−6 3.923−6 2.778−6

1–68 2.253−5 2.071−5 1.862−5 1.625−5 1.370−5 1.112−5 8.714−6 6.605−6 4.871−6 3.514−6

1–69 2.281−5 2.124−5 1.943−5 1.743−5 1.535−5 1.338−5 1.167−5 1.034−5 9.399−6 8.798−6

1–70 9.522−5 9.781−5 1.017−4 1.075−4 1.156−4 1.266−4 1.409−4 1.586−4 1.796−4 2.037−4

1–71 9.074−6 7.861−6 6.738−6 5.651−6 4.602−6 3.624−6 2.759−6 2.037−6 1.465−6 1.033−6

1–72 5.620−6 5.071−6 4.438−6 3.751−6 3.056−6 2.401−6 1.824−6 1.346−6 9.706−7 6.869−7

1–73 1.297−5 1.314−5 1.358−5 1.441−5 1.573−5 1.758−5 1.990−5 2.254−5 2.529−5 2.794−5

1–74 9.262−6 8.418−6 7.416−6 6.299−6 5.145−6 4.040−6 3.057−6 2.239−6 1.596−6 1.115−6

1–75 1.608−5 1.503−5 1.454−5 1.454−5 1.505−5 1.608−5 1.765−5 1.975−5 2.235−5 2.537−5

1–76 6.747−6 6.304−6 5.831−6 5.364−6 4.952−6 4.636−6 4.436−6 4.348−6 4.349−6 4.407−6

1–77 6.073−6 5.197−6 4.461−6 3.793−6 3.166−6 2.578−6 2.043−6 1.577−6 1.190−6 8.804−7

1–78 1.461−5 1.345−5 1.214−5 1.067−5 9.075−6 7.443−6 5.891−6 4.514−6 3.365−6 2.454−6

1–79 7.663−6 7.000−6 6.358−6 5.712−6 5.075−6 4.483−6 3.964−6 3.538−6 3.203−6 2.950−6

1–80 7.865−6 7.027−6 6.220−6 5.401−6 4.566−6 3.742−6 2.970−6 2.287−6 1.717−6 1.261−6

1–81 6.570−6 6.174−6 5.869−6 5.650−6 5.529−6 5.516−6 5.594−6 5.726−6 5.872−6 6.005−6

1–82 2.143−5 1.986−5 1.788−5 1.555−5 1.300−5 1.043−5 8.027−6 5.957−6 4.283−6 3.004−6

1–83 9.578−6 8.801−6 7.900−6 6.883−6 5.797−6 4.715−6 3.708−6 2.831−6 2.107−6 1.537−6

1–84 1.046−5 9.696−6 8.751−6 7.655−6 6.473−6 5.301−6 4.234−6 3.341−6 2.647−6 2.143−6

1–85 2.547−5 2.502−5 2.482−5 2.479−5 2.490−5 2.513−5 2.546−5 2.588−5 2.634−5 2.683−5

1–86 1.576−5 1.463−5 1.322−5 1.155−5 9.714−6 7.855−6 6.114−6 4.600−6 3.362−6 2.403−6

1–87 1.361−5 1.289−5 1.199−5 1.094−5 9.831−6 8.748−6 7.796−6 7.051−6 6.553−6 6.311−6

1–88 4.959−6 4.617−6 4.183−6 3.666−6 3.091−6 2.499−6 1.938−6 1.445−6 1.042−6 7.316−7

1–89 2.584−6 2.358−6 2.088−6 1.791−6 1.487−6 1.197−6 9.373−7 7.169−7 5.375−7 3.964−7

1–90 2.632−6 2.390−6 2.102−6 1.785−6 1.464−6 1.163−6 9.030−7 6.933−7 5.341−7 4.191−7

1–91 6.271−6 6.163−6 6.119−6 6.182−6 6.402−6 6.809−6 7.401−6 8.135−6 8.943−6 9.750−6

1–92 5.423−6 4.953−6 4.382−6 3.738−6 3.069−6 2.424−6 1.846−6 1.363−6 9.805−7 6.912−7

1–93 5.478−6 4.970−6 4.358−6 3.681−6 2.988−6 2.332−6 1.754−6 1.277−6 9.043−7 6.271−7

1–94 5.202−6 5.083−6 4.969−6 4.893−6 4.892−6 4.987−6 5.178−6 5.442−6 5.745−6 6.053−6

1–95 1.203−5 1.190−5 1.179−5 1.173−5 1.179−5 1.202−5 1.246−5 1.310−5 1.391−5 1.479−5

1–96 3.593−6 3.280−6 2.898−6 2.466−6 2.016−6 1.581−6 1.193−6 8.686−7 6.144−7 4.247−7

1–97 1.545−4 1.603−4 1.687−4 1.806−4 1.968−4 2.183−4 2.457−4 2.796−4 3.197−4 3.657−4

1–98 1.326−5 1.356−5 1.410−5 1.502−5 1.640−5 1.829−5 2.064−5 2.330−5 2.609−5 2.878−5

The graphs show that there is excellent agreement be-
tween our background collision strengths and the distorted
wave results. Only for the forbidden transitions 1−20 (electric
quadrupole) is the difference more noticeable. Figure 1 shows

that the BM distorted wave collision strengthΩ(1−20) is lower
than ours. Our calculations show that the contribution, from
partial waves 13 ≤ L ≤ 40 at Ei = 282 Ry, to the total col-
lision strength Ω(1−20) is 17%. For L > 40 the contribution
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Table 8. Υ(i, j) for T = 107.1 ◦K. CDMB, present results; BM, Bhatia & Mason (1981, 1986); GO, Guo-Xin & Ong (1998b); Ba, Bhatia; SGC,
Sampson et al. (1984).

i, j CDMB BM GO SGC i, j CDMB SGC i, j CDMB Ba SGC

1, 11 1.018−3 6.103−4 6.487−4 6.196−4 1, 27 3.751−5 1.326−5 1, 43 1.435−5 8.123−6

1, 12 1.376−2 1.297−2 1.507−2 1.560−2 1, 28 1.925−5 6.106−6 1, 44 5.650−5 1.642−5

1, 13 6.598−3 5.485−3 6.615−3 5.920−3 1, 29 5.955−5 2.855−5 1, 45 1.181−4 5.230−5

1, 14 2.298−4 1.590−4 1.629−4 1.611−4 1, 30 1.952−5 7.159−6 1, 46 9.512−4 1.181−3

1, 15 1.007−2 9.167−3 9.542−3 1.075−2 1, 31 5.782−5 4.069−5 1, 47 2.077−4 2.259−4

1, 16 1.162−3 8.050−4 7.969−4 8.112−4 1, 32 8.565−6 4.358−5 1, 48 2.473−3 2.287−3

1, 17 1.071−3 8.970−4 8.878−4 8.991−4 1, 33 2.267−5 6.116−5 1, 49 6.430−5 6.004−5

1, 18 1.909−3 1.551−3 1.585−3 1.644−3 1, 34 7.235−5 3.424−5 1, 50 7.714−4 6.249−4

1, 19 2.540−3 2.072−3 2.079−3 2.121−3 1, 35 8.133−5 8.430−5 1, 51 3.268−4 3.310−4

1, 20 2.434−2 1.801−2 2.506−2 2.564−2 1, 36 3.234−4 4.093−4 1, 52 3.022−3 2.984−3

1, 21 7.157−6 2.355−6 1, 37 1.404−4 1.473−4 1, 53 2.815−4 2.830−4

1, 22 3.404−4 5.228−4 1, 38 5.799−5 3.381−5 1, 54 4.976−4 5.240−4

1, 23 5.033−5 3.014−5 1, 39 3.601−5 1.465−5 1, 55 6.582−4 6.949−4

1, 24 2.678−5 8.776−6 1, 40 3.875−5 1.771−5 1, 56 3.884−3 3.887−3

1, 25 5.950−4 8.420−4 1, 41 5.438−5 2.772−5

1, 26 1.149−4 1.256−4 1, 42 4.923−5 3.391−5

a Private communication.

Fig. 2. Top figure shows Ω(1−15) as function of the incident energy
in rydbergs. Bottom figure shows the collision strength high energy
points in the scaled form and the fit to the infinity energy point.

is negligible. Therefore, it is likely that insufficient high par-
tial wave contribution was taken into account, for this type of
transition, in BM’s calculations. Note the prominent resonance
structure at low energies which has been neglected in all previ-
ous calculations.

3.1.2. Comparison of Υ(i , j) for the n = 2→ n′ = 3, 4

Sampson et al. (1984; hereafter SGC), and Guo-Xin & Ong
(1998b, hereafter GO) used a relativistic DW method to calcu-
late the collision strengths. BM and GO give collision strengths

for transitions between the lowest 20 levels, at the energies
Ei = 85.0, 127.5, 170.0, 250.0, 350 Ry. We used the Burgess &
Tully (1992) method (with a linear extrapolation to estimate the
value of Ω(i, j) at E j = 0) to calculate the thermally-averaged
Υ(i, j) for these two datasets.

The Υ(i, j) of SGC were obtained from the CHIANTI4

atomic database version 4 (Young et al. 2003). For the n =
2 → n′ = 4 transitions, we have added to the comparison
the distorted-wave unpublished results kindly provided by A.
Bhatia, included in the CHIANTI database (hereafter B).

Table 8 presents a comparison of the Υ(i, j) calculated at
T = 1.2 × 107 ◦K with the present study (CDMB) with those
of BM, B and SGC. From Table 8 we see that for optically
allowed transitions between states with the same spin multi-
plicity the agreement is almost perfect in the case of (1, 52)
where CDMB/B = 1.01 but otherwise varies from between
CDMB/SGC = 0.93 for (1, 15) up to CDMB/SGC = 0.70 for
(1, 25). For optically allowed transitions between singlet and
triplet states the agreement varies from between CDMB/SGC =
1.11 for (1, 13) up to CDMB/SGC = 1.37 for (1, 42) and
CDMB/B = 1.23 for (1, 50).

For the transitions n = 2 → n′ = 3 (1, 20), (1, 32), (1, 35),
(1, 36), (1, 37) the differences between the present and other
calculations are not larger than 35%; for the transition (1, 12)
we notice that CDMB/SGC = 0.19. For most of the remaining
n = 2 → n′ = 3 transitions Υ(CDMB) exceeds Υ(SGC) and
Υ(BM) by up to a factor 3. The reason for this is undoubtedly
the neglect by SGC and BM of resonances, which in our cal-
culation occur in great profusion and have a profound effect on
the collision strengths of optically forbidden transitions.

For the optically forbidden transitions up to n = 4 the
agreement between CDMB and B is strikingly good, which
seems to indicate that the effect of resonances is negligible for
these transitions.

4 http://www.chianti.rl.ac.uk/
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Table 9. Fractional level population Nj for the n = 2, 3 levels, calculated at 109, 1014 (cm−3) electron densities and the temperature T = 13 MK.
(R): computed with all the resonances and all the levels up to n = 4; (NR): computed with all the levels up to n = 4, but neglecting the
contribution from the resonances; (BM): computed with the DW collision strengths of Bhatia & Mason (1986), which included only the
n = 2, 3 levels.

i Level 109 (R) 109 (NR) 109 (BM) 1014 (R) 1014 (NR) 1014 (BM)

1 2s2 1Se
0 0.98554 0.99104 0.99019 0.90014 0.93809 0.93757

2 2s 2p 3Po
0 0.01446 9.0 × 10−3 9.8 × 10−3 0.02465 0.01600 0.01754

3 2s 2p 3Po
1 1.6 × 10−9 1.1 × 10−9 1.0 × 10−9 1.3 × 10−4 9.5 × 10−5 9.0 × 10−5

4 2s 2p 3Po
2 3.2 × 10−6 1.6 × 10−6 1.5 × 10−6 0.07508 0.04581 0.04479

5 2s 2p 1Po
1 4.7 × 10−11 4.5 × 10−11 4.3 × 10−11 4.3 × 10−6 4.3 × 10−6 4.1 × 10−6

6 2p2 3Pe
0 7.8 × 10−14 5.3 × 10−14 1.8 × 10−14 8.1 × 10−9 5.3 × 10−9 2.0 × 10−9

7 2p2 3Pe
1 5.4 × 10−13 3.1 × 10−13 3.0 × 10−13 1.5 × 10−7 8.6 × 10−8 8.4 × 10−8

8 2p2 3Pe
2 2.2 × 10−13 1.3 × 10−13 1.0 × 10−13 1.7 × 10−7 9.9 × 10−8 9.3 × 10−8

9 2p2 1De
2 4.0 × 10−13 2.9 × 10−13 2.2 × 10−13 1.1 × 10−7 6.8 × 10−8 5.7 × 10−8

10 2p2 1Se
0 9.0 × 10−14 6.8 × 10−14 2.8 × 10−14 8.6 × 10−9 6.5 × 10−9 2.8 × 10−9

11 2s 3s 3Se
1 3.7 × 10−16 2.6 × 10−16 1.5 × 10−16 4.0 × 10−11 2.8 × 10−11 1.4 × 10−11

12 2s 3s 1Se
0 9.3 × 10−15 9.1 × 10−15 8.6 × 10−15 8.5 × 10−10 8.6 × 10−10 8.2 × 10−10

13 2s 3p 3Po
1 1.3 × 10−15 1.3 × 10−15 1.0 × 10−15 1.2 × 10−10 1.2 × 10−10 9.7 × 10−11

14 2s 3p 3Po
0 6.6 × 10−15 4.6 × 10−15 2.7 × 10−15 8.3 × 10−10 5.8 × 10−10 2.6 × 10−10

15 2s 3p 1Po
1 1.2 × 10−15 1.2 × 10−15 1.0 × 10−15 1.1 × 10−10 1.1 × 10−10 9.7 × 10−11

16 2s 3p 3Po
2 1.3 × 10−14 9.6 × 10−15 7.8 × 10−15 2.0 × 10−9 1.4 × 10−9 7.4 × 10−10

17 2s 3d 3De
1 6.4 × 10−17 4.9 × 10−17 3.3 × 10−17 7.8 × 10−12 5.9 × 10−12 3.1 × 10−12

18 2s 3d 3De
2 8.1 × 10−17 6.9 × 10−17 5.8 × 10−17 9.6 × 10−12 7.8 × 10−12 5.5 × 10−12

19 2s 3d 3De
3 1.1 × 10−16 9.2 × 10−17 7.9 × 10−17 2.0 × 10−11 1.5 × 10−11 7.5 × 10−12

20 2s 3d 1De
2 1.4 × 10−15 1.3 × 10−15 9.5 × 10−16 1.2 × 10−10 1.3 × 10−10 9.0 × 10−11

3.2. Level populations

Transition probabilities were calculated with AUTO-
STRUCTURE and the theoretical energies of Table 2,
and used together with the Υ values to calculate the fractional
level population Nj. Magnetic quadrupole transition probabil-
ities were calculated with SUPERSTRUCTURE (see Eissner
et al. 1974; Nussbaumer & Storey 1978). The level population
equations were solved including the excitation and radiative
decay between all levels. We obtain Nj(Ne, Te), the population
of level j relative to the total number density of the ion, as a
function of the electron temperature and density.

The values corresponding to the n = 2, 3 levels calculated
at the temperature of maximum ion fraction (T = 13 MK) and
at two densities are shown in Table 9. At electron densities of
1014 cm−3 most of the ion population is still in the 1S0 ground
state, with only a small fraction in the first 3P excited states.
This is a very high electron density for astrophysical plasmas.
Therefore, for astrophysical plasmas, almost all of the excita-
tions to the higher states will come from the ground state, even
if collision strengths from excited states are much larger than
the values from the ground.

In order to estimate the effects that resonances have on
the level populations (hence on line intensities), we have also
calculated the effective collision strengths using the spline
fits to the 101 Ω(i − j) data points, i.e. by neglecting the
contribution from the resonances. These values (NR) are also
shown in Table 9. It is quite clear that the resonances have a
dramatic effect on the populations of the n = 2 levels, while the
effect is much reduced for the n = 3 levels.

For comparison, we have also calculated the level popula-
tions using the same set of transition probabilities and the ef-
fective collision strengths which we obtained from the DW data
published in Bhatia & Mason (1986). Good agreement is found
between these DW results (BM, Table 9) and the present ones
that neglect the resonances (NR). Note that the original level
populations published by Bhatia & Mason (1981) differ from
the present result. This is due to two causes. First, the colli-
sion strengths were revised in Bhatia & Mason (1986). Second,
Bhatia & Mason (1981) used a different set of transition prob-
abilities.

4. Summary and conclusions

The background values of the collision strengths shown in
Fig. 1 confirm the reliability of previous DW calculations
(Bhatia & Mason 1981; Bhatia & Mason 1986). However, the
resonance contributions have an important effect on the effec-
tive collision strengths and in turn on the level populations. For
the n = 2→ 2 transitions, the contribution of the resonances is
large. The resonance contributions of optically forbidden tran-
sitions are significant for the n = 2 → 3 complex, particularly
at low temperatures, but not so important for the n = 2 → 4
transitions.

It is very important in these calculations to take account of
the infinity energy limit to obtain effective collision strengths.
This is now facilitated within the AUTOSTRUCTURE code for
use with the ICFT version of the R-matrix programs.
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The accurate calculations for Fe+22 presented in this paper
provide an opportunity for reliably analysing the X-ray spectra
from astrophysical plasmas.
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