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Abstract. This paper reports on radiative transition rates and electron impact excitation rate coefficients for levels of the
3d7 ground configuration of Ni . The radiative data were computed using the Thomas-Fermi-Dirac central potential method,
which allows for configuration interactions (CI) and relativistic effects in the Breit-Pauli formalism. Collision strengths in
LS-coupling were calculated in the close coupling approximation with the R-matrix method. Then, fine structure collision
strengths were obtained by means of the intermediate-coupling frame transformation (ICFT) method that accounts for spin-orbit
coupling effects. The collision strengths were integrated over a Maxwellian distribution of electron energies, and the resulting
effective collision strengths are given for a wide range of temperatures. We build a multilevel model for the Ni  system and
use it to identify the most important lines in optical and infrared spectra and to compute line ratios as diagnostics of nebular
conditions. Finally, we test these data against recent observations of the bipolar planetary nebula Mz 3.
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1. Introduction

Accurate atomic data for iron and other iron group elements
is of major importance in astrophysics. Among these species,
nickel is the second most abundant element; and under typi-
cal conditions of H  regions, Ni  is the dominant ionization
stage of that element. Ni  is also important to the spectra of
early supernova spectra.

The IRON Project is an international enterprise de-
voted to the computation of accurate atomic data for
the iron group elements (Hummer et al. 1993). A com-
plete list of publications from this project can be found at
http://www.am.qub.uk/projects/iron/papers/.Within
this project and following on previous efforts by A. Pradhan
and his group at The Ohio State University, we have been
systematically working on data for the low ionization stages
of iron peak elements, e.g. radiative and collisional rates
for Fe – (Bautista & Pradhan 1998), Ni  (Bautista 1999,
2005), Ni  (Bautista 2001), and here we present a calculation
for Ni . The first calculation of collisional data for Ni 
was presented by Sunderland et al. (2002), as a test case for
a new parallel R-matrix program PRMAT. Nevertheless, this
computation was wholly done in LS-coupling and is thus of
limited practical use.

A recent spectroscopic study of the bipolar planetary
nebula Mz 3 (Zhang & Liu 2002) found five Ni  lines from

forbidden transitions among levels of the 3d7 ground con-
figuration, i.e. λ5041.6 (4F9/2−2G9/2), λλ5289.4, 6126.3
(4F5/2−2G7/2 and 4F5/2−4P3/2), and λλ5363.4, 5904.0
(4F7/2−2G9/2 and 4F7/2−4P5/2). In the present work, we
build a multilevel model for the Ni  ion, that can be used
to analyze this and other nebulae. In this sense, we find that
Ni  emissivity line ratios are useful as diagnostics of electron
densities between 106 and 108 cm−3, where lines of iron ions
and lighter species cannot be used.

2. Atomic data

2.1. Atomic structure calculations

We use the atomic structure code AUTOSTRUCTURE
(Badnell 1986, 1997) based on the Thomas-Fermi-Dirac cen-
tral potential to reproduce the structure of the Ni  ion. This
code is based on the program SUPERSTRUCTURE originally
developed by Eissner et al. (1974). In this approach the wave-
functions are written as configuration interaction expansions of
the type

ψi =
∑

j

φ jc ji, (1)

where the coefficients c ji are chosen so as to diagonal-
ize 〈ψi|H|ψi〉. Here H is the Hamiltonian and the basic
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Table 1. Spectroscopic and correlation configuration for Ni , and
scaling parameters λnl for each spectroscopic orbital in the Thomas-
Fermi-Dirac potential and the 4d̄ pseudo-orbital in the Coulomb
potential.

Configuration

Spectroscopic: 3s23p63d7, 3s23p63d64s, 3s23p63d64p

Correlation: 3s23p63d54s2, 3s23p63d54s4p,

3s23p53d8, 3s23p53d74s, 3s23p53d74p

3s23p43d9, 3s3p63d8, 3s3p63d74s

3s3p63d74p, 3p63d9, 3p63d84s

3p63d74s2, 3p63d74s4p, 3p63d84p

3s23p63d64d̄

λnl 1s : 1.4301, 2s : 1.1423, 2p : 1.0864

3s : 1.0704, 3p : 1.0601, 3d : 1.0282

4s : 1.0330, 4p : 1.0541, 4d̄ : –0.3969

functions φ j are constructed from one-electron orbitals gener-
ated using the Thomas-Fermi-Dirac model potential (Eissner &
Nussbaumer 1969). The λnl scaling parameters are optimized
by minimizing a weighted sum of energies. The basic list of
configurations and scaling parameters used in this work are
listed in Table 1. The relatively large number of correlation
configurations in our expansion was found to be important for
an accurate representation of the target.

Relativistic effects are included in the calculation by means
of the Breit-Pauli operators in the form:

H = Hnr + Hbp, (2)

where Hnr is the usual non-relativistic Hamiltonian and Hbp

the Breit-Pauli perturbation, which includes one- and two-body
operators (see Jones 1970, 1971; Eissner et al. 1974). This
Breit-Pauli perturbation is given by

Hbp = H1b + H2b (3)

where the one-body relativistic operators

H1b =

N∑

n=1

fn(mass) + fn(d) + fn(so) (4)

represent the spin–orbit interaction fn(so), and the non-fine
structure mass-variation fn(mass) and one-body Darwin fn(d)
corrections. The two-body corrections

H2b =
∑

n>m

gnm(so) + gnm(ss) + gnm(css) + gnm(d) + gnm(oo), (5)

usually referred to as the Breit interaction, include the fine
structure terms gnm(so) (spin–other-orbit and mutual spin–
orbit) and gnm(ss) (spin–spin), and the non-fine structure terms
gnm(css) (spin–spin contact), gnm(d) (Darwin), and gnm(oo)
(orbit–orbit).

The expansion considered here for the Ni  system in-
cludes 36 LS terms. Table 2 presents the complete list of
states included, as well as a comparison between the calcu-
lated target term energies and the observed energies taken

Table 2. Calculated and observed term energies (in Ryd) for Ni .
The second column shows the ab initio energies neglecting relativistic
effects (no relat.); the third column shows the energies including the
effects of mass, velocity, and Darwin relativistic effects (1-B relat.) but
without two-body interactions; the fourth column gives the calculated
energies allowing for all relativistic effects (2-B rel.); and the fifth
column gives the experimental energies from NIST (2000).

Level Present Experiment

No relat. 1-B rel. 2-B rel. NIST (2000)

3d7 4F 0.000000 0.000000 0.000000 0.00000

3d7 4P 0.167744 0.168143 0.167232 0.15664

3d7 2G 0.194507 0.194612 0.194259 0.17473

3d7 2P 0.213619 0.214542 0.215411 0.20805

3d7 2H 0.273222 0.273044 0.273261 0.23661

3d7 2D 0.244796 0.245531 0.248822 0.24255

3d7 2F 0.426665 0.427212 0.427617 0.38753

3d7 2D 0.642415 0.643563 0.645014 0.60678

3d64s 6D 1.050524 1.021174 1.021967 1.00332

3d64s 4D 1.174054 1.144630 1.145408 1.09810

3d64s 4P 1.329187 1.300472 1.301645 1.26161

3d64s 4H 1.323730 1.294378 1.293635 1.26227

3d64s 4F 1.348514 1.319496 1.319164 1.27956

3d64s 4G 1.385653 1.356394 1.357487 1.31596

3d64s 2P 1.401766 1.373031 1.375162 1.31259

3d64s 2H 1.396225 1.366841 1.367147 1.32057

3d64s 2F 1.422926 1.393841 1.393851 1.33768

3d64s 2G 1.458127 1.428833 1.430886 1.37387

3d64s 4D 1.471055 1.441942 1.442994 1.38750

3d64s 2I 1.474509 1.445083 1.445357 1.40451

3d64s 2G 1.490605 1.461311 1.464264 1.41399

3d64s 2D 1.546979 1.517824 1.517252 1.44471

3d64s 2S 1.554798 1.525544 1.528841

3d64s 2D 1.552943 1.524521 1.528960

3d64s 2F 1.647569 1.618736 1.619422 1.55148

3d64p 6Do 1.612450 1.600081 1.599185 1.59328

3d64s 4F 1.736458 1.707397 1.709217 1.62704

3d64p 6Fo 1.682306 1.669815 1.669569 1.64876

3d64p 6Po 1.709164 1.696714 1.696861 1.67615

3d64p 4Do 1.736066 1.723675 1.725165 1.68833

3d64s 2F 1.812385 1.783258 1.784634 1.68428

3d64p 4Fo 1.750378 1.737852 1.738949 1.69828

3d64s 4P 1.734944 1.706121 1.707983

3d64p 4Po 1.791677 1.779220 1.779713 1.73270

3d64s 2G 1.843564 1.814675 1.816295 1.72906

3d64s 2P 1.812817 1.783908 1.786087

from NIST (2000), averaged over fine structure. Here we show
the LS-coupling energies without relativistic effects and those
that allow for one- and two-body relativistic corrections. We
find that the 2-body relativistic operators have only negligible
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effects, less than 0.1%, on the averaged term energies. Mass,
velocity, and Darwin operators, on the other hand, lower the
computed energies between 1% and 2% for the 3d64s and
3d64p terms to bring them closer to experimental values. In
our best target representation, the theoretical energies for the
lowest eight terms are typically within 5% of the experimental
values, and for the higher terms the agreement is within 2%.

For calculating radiative rates, fine tuning is performed
with term energy corrections, where the improved relativistic
wavefunction ψR

i is obtained in terms of the non-relativistic
functions

ψR
i = ψ

LS
i +
∑

j�i

ψLS
j ×
〈ψLS

j |Hbp|ψLS
i 〉

ELS
i − ELS

j

, (6)

with the LS energy differences Ei(LS) − E j(LS) adjusted to
fit weighted averaged energies of the experimental multiplets
(Zeippen et al. 1977). The effects of TECs and relativistic op-
erators on the fine structure levels are illustrated in Table 3 for
the first six 3d7 multiplets of the Ni  ion.

For dipole allowed transitions, spontaneous decay rates are
given by

Ai j(E1) = 2.6774 × 109(Ei − E j)
3 1
gi

S E1
i j (s−1), (7)

while for forbidden transitions we consider electric
quadrupole (E2) and magnetic dipole (M1) transition rates
given by

Ai j(E2) = 2.6733 × 103(Ei − E j)5 1
gi

S E2
i j (s−1) (8)

Ai j(M1) = 3.5644× 104(Ei − E j)3 1
gi

S M1
i j (s−1), (9)

where gi is the statistical weight of the upper initial level i, S i j

the line strength, and E the energy in Rydberg.
Equations (7)–(9) show that the transition rates are sensitive

to the energy levels accuracy, particularly for forbidden transi-
tions between levels with small energy difference. Thus, we
perform further adjustments to the transitions rates by correct-
ing out best calculated energies to experimental values. Such
corrections are called “Level Energy Corrections (LECs)”.

In Fig. 1 we plot the g f -values for dipole allowed transi-
tions among fine structure levels computed in the length gauge
vs. those in the velocity gauge. The overall agreement be-
tween the two gauges is around 20% for log (g f )-values greater
than −3, which offers a good indicator of the quality of the
dipole allowed radiative data.

As regards forbidden transitions, Tables 4 and 5 present
transition probabilities for magnetic dipole and electric
quadrupole transitions rates for the 4F, 4P, 2G, and 2P levels
within the 3d7 ground configuration of Ni . Here we show the
effects of TECs and 2-body relativistic operators on the radia-
tive rates for forbidden transitions. These effects go from a few
percent in most cases to several factors for some transitions that
involve highly mixed levels. We also compare the present data
with those by Hansen et al. (1984) and Garstang (1968), who
used the method of parametric fitting to observed energy level

Table 3. Calculated and observed fine structure energy levels. (a) With
neither 2-body relativistic operators nor TECs; (b) including 2-body
relativistic effects, but without TECs; (c) with 2-body relativistic op-
erators and TECs.

Level Present Experiment

(a) (b) (c)

4F9/2 0.000000 0.000000 0.000000 0.000000

4F7/2 0.011524 0.010965 0.011006 0.010841

4F5/2 0.019826 0.018864 0.018908 0.018613

4F3/2 0.025453 0.024230 0.024266 0.023885

4P5/2 0.175599 0.175910 0.165389 0.165109

4P3/2 0.177558 0.177976 0.167690 0.167371

4P1/2 0.184077 0.183526 0.173089 0.172762

2G9/2 0.201011 0.200450 0.180734 0.180701

2G7/2 0.211793 0.210452 0.190982 0.190889

2P3/2 0.222958 0.223050 0.215622 0.215505

2P1/2 0.233077 0.232044 0.224644 0.224640

2H11/2 0.281112 0.279733 0.243154 0.242844

2H9/2 0.290788 0.288895 0.252627 0.252217

2D5/2 0.253152 0.253031 0.246800 0.246921

2D3/2 0.271001 0.269100 0.262786 0.262242
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Fig. 1. Log g fV plotted against Log g fL for transitions between calcu-
lated energy levels.

structure. Overall, there is good agreement between our best re-
sults (TEC + 2-body) and the data of these authors, except for
a few weak transitions. From these comparisons, the observed
accuracy in the representation of the energy level structure of
the ions and analysis of the completeness of the configurations
expansion used in the calculation we estimate that the transi-
tion rates for forbidden transitions among lowly excited levels
have an accuracy of ∼20%.
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Table 4. Magnetic dipole transition rates (in s−1) for levels within 3d7 ground state configuration of Ni . The table shows results computed
with neither TEC nor 2-body relativistic operators (w/o T + w/o 2-body), with 2-body relativistic operators (w/o T + 2-body), with TECs and
2-body relativistic operators (T + 2-body) and with TECs, LEVs and 2-body relativistic operators (T + L + 2-body). The rates previously
reported by Hansen et al. (1984) and Garstang (1969) are also given.

Ai j(M1)

Term i Term j w/o T +w/o 2-body w/o T + 2-body T + 2-body T + L + 2-body Hansen Garstang
4F7/2

4F9/2 6.80E−2 5.87E−2 5.94E−2 5.67E−2 5.70E−2 4.80E−2
4F5/2

4F7/2 4.36E−2 3.76E−2 3.76E−2 3.58E−2 3.60E−2 3.20E−2
4F3/2

4F5/2 1.52E−2 1.32E−2 1.31E−2 1.25E−2 1.30E−2 1.10E−2
4P5/2

4F7/2 1.03E−2 8.55E−3 7.38E−3 7.36E−3 5.30E−3 4.70E−3
4P5/2

4F5/2 3.49E−3 2.75E−3 2.53E−3 2.53E−3 2.00E−3 1.70E−3
4P5/2

4F3/2 1.25E−3 1.00E−3 9.18E−4 9.20E−4 6.90E−4 6.10E−4
4P3/2

4F5/2 3.47E−3 2.01E−3 1.55E−3 1.55E−3 1.80E−3 1.00E−3
4P3/2

4F3/2 7.92E−4 3.42E−4 1.88E−4 1.88E−4 3.30E−4 9.00E−5
4P3/2

4P5/2 2.16E−4 2.58E−4 3.61E−4 3.43E−4 3.40E−4 7.30E−4
4P1/2

4F3/2 7.16E−7 5.06E−6 7.54E−6 7.55E−6 1.50E−6 7.90E−6
4P1/2

4P3/2 1.55E−2 9.67E−3 8.96E−3 8.92E−3 8.90E−3 8.00E−3
2G9/2

4F9/2 1.18E+0 9.39E−1 8.44E−1 8.43E−1 9.10E−1 8.30E−1
2G9/2

4F7/2 3.62E−1 3.00E−1 2.64E−1 2.64E−1 2.80E−1 2.60E−1
2G7/2

4F9/2 4.35E−2 3.57E−2 3.29E−2 3.29E−2 3.40E−2 3.10E−2
2G7/2

4F7/2 4.52E−1 3.53E−1 3.17E−1 3.18E−1 3.50E−1 3.20E−1
2G7/2

4F5/2 3.31E−1 2.64E−1 2.34E−1 2.35E−1 2.50E−1 2.40E−1
2G7/2

2G9/2 2.44E−2 1.95E−2 2.09E−2 2.05E−2 2.00E−2 1.80E−2
2P3/2

4F5/2 2.46E−1 1.90E−1 1.76E−1 1.76E−1 1.70E−1 2.30E+1
2P3/2

4F3/2 1.76E−1 1.34E−1 1.25E−1 1.26E−1 1.20E−1 1.60E−1
2P3/2

4P5/2 3.51E−1 2.89E−1 3.08E−1 3.11E−1 3.30E−1 3.20E+1
2P3/2

4P3/2 1.79E−1 1.47E−1 1.56E−1 1.58E−1 1.70E−1 1.60E+1
2P3/2

4P1/2 6.10E−2 5.39E−2 5.91E−2 5.99E−2 6.40E−2 6.00E−2
2P1/2

4F3/2 5.40E−3 3.10E−3 3.21E−3 3.23E−3 3.90E−3 3.50E−3
2P1/2

4P3/2 9.66E−4 7.42E−4 6.97E−4 7.08E−4 6.40E−4 5.00E−4
2P1/2

4P1/2 4.46E−1 3.61E−1 3.84E−1 3.91E−1 4.20E−1 4.20E+1
2P1/2

2P3/2 2.30E−2 1.63E−2 1.65E−2 1.71E−2 1.70E−2 2.30E−2

2.2. Scattering calculations

In the close coupling (CC) approximation the total wave func-
tion of the electron-ion system is represented as

ψ(E; LSπ) = A
∑

i

χiθi +
∑

j

c jΦ j, (10)

where χi is the target ion wave function in a specific state S i Li,
θi is wave function of the free electron, Φ j short range corre-
lation functions for the bound (e+ion) system, and A the anti-
symetrization operator.

The variational procedure gives rise to a set of coupled
integro-differential equations that are solved by the R-matrix
technique (Burke et al. 1971; Berrington 1978, 1995) within a
box of radios r ≤ a. In the asymptotic region r > a exchange
between the outer electron and the target ion can be neglected

and if all long-range potentials beyond Coulombic are also ne-
glected, the reactance K-matrix and the scattering S-matrix are
obtained by matching the inner-radial functions at the boundary
to linear combinations of the outer-region Coulomb solutions.
Later, contributions of long-range potentials to the collision
strengths are included perturbatively (see Griffin et al. 1999).

The S-matrix elements determine collision strength for a
transition from an initial target state i to a final target state f

Ωi f =
1
2

∑
w|S i f − δi f |, (11)

wherew = (2L+1)(2S+1) or (2J+1) depending on the coupling
scheme, and the summation runs over the partial waves and
channels coupling the initial and final state of interest.

To calculate collision strengths we used the same ba-
sic expansion shown in Tables 1 and 2. Since our R-matrix
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Table 5. Electric quadrupole transition rates (in s−1) for levels within the 3d7 ground state configuration of Ni . The table shows the results
computed with neither TEC nor 2-body relativistic operators (w/o T + w/o 2-body), with 2-body relativistic operators (w/o T + 2-body), with
TECs and 2-body relativistic operators (T + 2-body) and with TECs, LEVs and 2-body relativistic operators (T + L + 2-body). The rates
previously reported by Hansen et al. (1984) and Garstang (1969) are also given.

Ai j(E2)

Term i Term j w/o T + w/o 2-body w/o T + 2-body T + 2-body T + L + 2-body Hansen Garstang
4F7/2

4F9/2 5.65E−09 4.41E−09 4.49E−09 4.16E−09 3.40E−09 2.50E−09
4F5/2

4F7/2 1.61E−09 1.25E−09 1.25E−09 1.15E−09 9.40E−10 7.40E−10
4F3/2

4F5/2 2.67E−10 2.11E−10 2.09E−10 1.93E−10 1.60E−10 1.20E−10
4P5/2

4F9/2 1.16E−01 1.18E−01 8.65E−02 8.57E−02 6.80E−02 6.20E−02
4P5/2

4F7/2 2.66E−02 2.74E−02 1.97E−02 1.96E−02 1.50E−02 1.50E−02
4P5/2

4F5/2 4.57E−03 4.76E−03 3.36E−03 3.36E−03 2.70E−03 2.50E−03
4P5/2

4F3/2 4.23E−04 4.44E−04 3.09E−04 3.11E−04 2.50E−04 2.40E−04
4P3/2

4F7/2 5.78E−02 6.05E−02 4.44E−02 4.42E−02 3.50E−02 3.40E−02
4P3/2

4F5/2 3.28E−02 3.47E−02 2.50E−02 2.50E−02 2.00E−02 1.90E−02
4P3/2

4F3/2 9.08E−03 9.67E−03 6.89E−03 6.91E−03 5.40E−03 5.40E−03
4P3/2

4P5/2 1.51E−11 1.99E−11 3.42E−11 3.14E−11 2.40E−11 8.10E−11
4P1/2

4F5/2 4.45E−02 4.54E−02 3.28E−02 3.28E−02 2.60E−02 2.50E−02
4P1/2

4F3/2 5.79E−02 5.93E−02 4.23E−02 4.24E−02 3.30E−02 3.20E−02
4P1/2

4P3/2 9.97E−10 4.49E−10 3.92E−10 3.89E−10 3.00E−10 2.40E−10
2G9/2

4F9/2 2.47E−04 1.97E−04 1.43E−04 1.42E−04 1.30E−04 1.20E−04
2G9/2

4F7/2 1.12E−05 9.16E−06 7.06E−06 7.09E−06 6.60E−06 5.70E−06
2G9/2

4F5/2 1.98E−05 1.56E−05 9.65E−06 9.73E−06 8.90E−06 7.70E−06
2G7/2

4F9/2 4.30E−05 3.23E−05 2.53E−05 2.52E−05 2.40E−05 2.00E−05
2G7/2

4F7/2 5.42E−05 4.21E−05 3.07E−05 3.07E−05 2.90E−05 2.60E−05
2G7/2

4F5/2 5.30E−06 4.35E−06 2.83E−06 2.84E−06 2.60E−06 2.30E−06
2G7/2

4F3/2 3.32E−05 2.70E−05 1.62E−05 1.64E−05 1.60E−05 1.30E−05
2G7/2

2G9/2 2.05E−09 1.29E−09 1.72E−09 1.67E−09 1.60E−09 1.20E−09
2P3/2

4F7/2 1.89E−02 1.61E−02 1.18E−02 1.18E−02 9.90E−03 7.20E−03
2P3/2

4F5/2 8.24E−03 7.11E−03 5.01E−03 5.03E−03 4.30E−03 2.90E−03
2P3/2

4F3/2 2.00E−03 1.73E−03 1.19E−03 1.20E−03 1.10E−03 7.40E−04
2P3/2

4P5/2 6.73E−06 5.56E−06 6.58E−06 6.68E−06 5.80E−06 5.60E−06
2P3/2

4P3/2 3.88E−06 3.06E−06 3.56E−06 3.63E−06 2.60E−06 2.90E−06
2P3/2

4P1/2 5.45E−08 5.23E−08 7.48E−08 7.66E−08 4.40E−08 5.60E−08
2P1/2

4F5/2 8.20E−03 6.78E−03 5.10E−03 5.14E−03 4.20E−03 3.40E−03
2P1/2

4F3/2 4.65E−03 3.89E−03 2.68E−03 2.70E−03 2.40E−03 1.70E−03
2P1/2

4P5/2 1.07E−05 7.94E−06 9.01E−06 9.21E−06 8.00E−06 8.40E−06
2P1/2

4P3/2 3.43E−07 2.14E−07 2.04E−07 2.10E−07 4.30E−07 3.90E−07
2P1/2

2P3/2 1.64E−08 8.66E−09 8.65E−09 9.20E−09 8.10E−09 1.50E−08

calculations only include the one-body relativistic operators,
the third column of Table 2 best represents the quality of the
target for the present collisional calculations. One problem with
the current target can be seing in the predicted relative order of
the terms 3d7 2D and 2H. These two states are difficult to rep-
resent because they are mixed at the fine structure level. In the-
ory, one should be very careful computing collision strengths
among states whose relative energy order is incorrect because
spin-orbit coupling of fine structure levels may affect the res-
onance structures. However, in the present case we do not ex-
pect to find major errors due to reversed order of these terms,

because the J values of the associated levels are all very differ-
ent and not coupled to each other.

Collision strengths and effective collision strengths were
calculated for all transitions between the lowest 8 even par-
ity terms that yield 19 levels. The additional higher excitation
terms shown in Table 2 were also included in the CC calcula-
tion, yet the collision strengths involving these terms may be in-
accurate due to the lack of correlation interaction. In the case of
the 3d64p configuration there are also problems because of the
incomplete list of levels included, thus there maybe collisional
coupling effects that are unaccounted for. The importance
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Table 6. Comparison between the present effective collision strengths in LS-coupling and those of Sunderland et al. (2002). The data is for
transitions from the 3d7 4F ground state to other terms of the 3d7 configuration.

5000 K 10 000 K 40 000 K

Present Sunderland Present Sunderland Present Sunderland
4P 7.337 6.851 7.050 6.049 5.322 4.527
2G 3.260 2.959 3.259 2.857 3.378 2.876
2P 1.018 1.121 1.035 0.9661 1.063 0.8726
2H 2.997 2.360 3.040 2.632 3.442 1.969
2D 2.021 1.201 1.838 1.274 1.746 1.369
2F 1.764 1.451 1.961 1.536 1.842 1.467

2D2 0.637 0.6145 0.697 0.6437 0.7909 0.7117

of including a large CC expansion, beyond the terms of the
3d7 configuration, was demonstrated by Sunderland et al.
(2002). They showed that the collision strengths for transitions
within the 3d7 configuration were underestimated by up to 40%
when the calculation neglected states of the 3d6 4s and 3d6 4p.

The computations were carried out with the RMATRX
package of codes (Berrington 1995). The set of (N+1)-electron
wavefunctions on the right hand of the CC expansion in
Eq. (10) includes all the configurations that result from adding
an additional electron to the target configurations. Partial wave
contributions are include from 104 S Lπ total symmetries with
angular momentum L = 0−12, total multiplicities (2S + 1) =
1−7, and parities even and odd. Additional contributions from
partial waves up to L = 60 were computed without ex-
change, which is a good approximation for high partial waves.
Beyond this point the collision strengths were “topped up”
with estimates of high partial waves contributions based on the
Coulomb-Bethe approximation (Burgess 1974). For all tran-
sitions the contributions from the high partial waves is less
than 20%. The collision strengths were calculated at 22 000 en-
ergy points from 0 to 12 Ry, with a resolution of 10−5 Ry in the
region with resonances and 5×10−3 Ry at higher energies. This
resolution was found sufficient for accurate calculations of ef-
fective collision strengths.

A dimensionless thermally-averaged effective collision
strength results from averaging the collision strength over a
Maxwellian distribution for electron velocities

Υi f =

∫ ∞

0
Ωi f exp (−ε f /kT )d(ε f /kT ), (12)

where ε f is the kinetic energy of the outgoing electron, T the
electron temperature in Kelvin and k = 6.339 × 10−6 Ry/K is
the Boltzmann’s constant. For the present work we have com-
puted effective collision strengths for various temperatures that
expand from 5000 K to 180 000 K. This range covers the regi-
mens of both photoionized and coronal plasmas.

In Table 6 we compare the present LS effective collision
strengths with those of Sunderland et al. (2002). Agreement
between the two sets of data is good (within ∼20%), with the
exception of the effective collision strengths for the 4F−2D
transition, which differs by ∼40%. The reasons for discrep-
ancy seem related to the difference in the target representations.
Our target representation yields reasonably accurate energies,

but the 2H and 2D terms come out in reverse energy order. By
contrast, the target representation of Sunderland et al. (2002)
does predict the 2H and 2D terms in the correct order; yet their
computed energies are considerably overestimated for all states
of the 3d7 configuration, perhaps due to missing configuration
interaction.

In order to investigate differences between the present re-
sults and those of Sunderland et al. (2002), we carried out
additional calculations with reduced configuration expansions.
Here we tried to remove all configurations with two-electron
jumps from the 3s and 3p orbitals from the CC expansion, but
without major detriment to the target. Thus we worked with
two new configuration expansions: (a) a 10-configuration ex-
pansion that includes the correlation configurations 3s23p53d8,
3s23p53d74s, 3s23p43d9, 3s3p63d8, 3s3p63d74s, 3s3p63d74p,
and 3s23p63d64d̄; (b) a 12-configuration expansion that in-
cludes 3s23p53d74p and 3s23p63d54s4p in addition to the con-
figurations in (a). In all calculations we maintained the same
number of LS terms in the CC expansion. Table 6 shows a com-
parison between effective collision strengths obtained from our
calculations and the results of Sunderland et al. (2002). This ta-
ble offers a good explanation for the discrepancies between our
results and those of Sunderland et al. One can see that the col-
lision strengths vary by up to 20% between our various calcu-
lations. In particular, we find that the collision strength for the
4F−2D transition obtained from the 10-configuration expansion
is only ∼20% higher than that of Sunderland et al. (2002), yet
this collision strength grows with the number of configurations
in the target representation.

Collision strengths for the fine-structure levels were ob-
tained by re-coupling unphysical LS reactance matrices and
then converting them to the physical matrices by means of
multi-channel quantum defect theory. This is the so-called
intermediate-coupling frame transformation (ICFT) method of
Griffin et al. (1998), which accounts for the spin-orbit effects
that are very important for the Ni IV system. Hence, we find
differences of up to several factors between the ICFT results
and fine structure collision strengths obtained from algebraic
recoupling that reach up to several factors for many transitions.

Figure 2 shows the collision strength for a sample of
transitions between levels of the lowest four multiplets.
Consequently, Fig. 3 shows the effective collision strength for
the same transitions over a wide range of temperatures.
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Fig. 2. Collision strengths for the Ni  ion for transitions within
the 3d7 configuration: a) 4F9/2–2G9/2; b) 4F5/2–2G7/2; c) 4F7/2–2G9/2;
d) 4F7/2–4P5/2; e) 4F5/2–4P3/2.
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Fig. 3. Effective collision strengths for the Ni  ion for the same tran-
sitions as in Fig. 2.

3. The Ni IV emission spectra

We build a collisional-radiative model of the Ni  ion us-
ing the data described above. This model is used to study the

Table 7. Comparison between the effective collision strengths
at 10 000 K in LS-coupling obtained from three different configura-
tion expansions for the target and those of Sunderland et al. (2002).
The data is for transitions from the 3d7 4F ground state to other terms
of the 3d7 configuration.

10-conf 12-conf 18-conf Sunderland
4P 6.916 7.358 7.050 6.049
2G 3.393 3.514 3.259 2.857
2P 1.028 1.132 1.035 0.966
2H 3.316 3.164 3.040 2.632
2D 1.596 1.762 1.838 1.274
2F 1.828 1.922 1.961 1.536

2D2 0.725 0.729 0.697 0.644
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Fig. 4. Emissivity line ratios vs. Log Ne for various temperatures. The
horizontal lines indicate the observed ratios in the spectra of Mz 3
(Zhang & Liu 2002).

emission spectrum of the system, identifying the most impor-
tant lines and selecting line emissivity ratios useful as diagnos-
tics of physical conditions in non-LTE plasmas.

For typical nebular temperatures between 7000
and 15 000 K, the strongest lines appear in the optical region.
For electron densities <106 cm−1 the dominant lines are
λ5517.66 (a 4F9/2−a 4P5/2) and λ5041.56 (a 4F9/2−a 2G9/2),
but even these are rather weak. Higher densities favor the
appearance of several other lines and the likelihood that the
Ni  spectrum can be observed. In this case, the strongest lines
are λ5041.56 (a 4F9/2−a 2G9/2), λ5363.30 (a 4F3/2−a 2G9/2),
and λ5288.22 (a 4F5/2−a 2G7/2). These lines were all iden-
tified in the spectrum of the bipolar planetary nebula Mz 3
(Zhang & Liu 2002) together with the transitions λ5517.66
(a 4F7/2−a 4P5/2) and λ6124.10 (a 4F3/2−a 4P1/2).

Figure 4 depicts the line emissivity ratios j(λ5041)/
j(λ5903) and j(λ5363)/ j(λ5903) vs. the logarithm of the elec-
tron density for various temperatures. These line ratios are
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sensitive to electron density in the Log Ne(cm−3) range from 6
to 8. The plots also show line ratios observed in the spectra
of Mz 3 (Zhang & Liu 2002), which indicate electron density
log Ne(cm−3) ≈ 6.6. This diagnostic agrees very closely with
the density derived from [Fe] lines.

4. Conclusions

We have computed radiative data, collision strengths, and effec-
tive collision strengths for transitions among 19 levels from the
3d7 ground configuration of Ni . The radiative data were cal-
culated using the Thomas-Fermi-Dirac central potential and the
rates for dipole forbidden transitions were found in good agree-
ment with previous semi-empirical calculations by Hansen
et al. (1984) and Garstang (1968). The collisional data for Ni 
obtained from the R-matrix method is presented for the first
time. These collision strengths account for relativistic effects
and contributions from extensive resonance structures.

The complete set of data obtained here allows us to build a
non-LTE collisional-radiative model for Ni , which was then
used to study the Ni  emission from typical photoionized neb-
ulae. Furthermore, we demonstrate the usefulness of various
Ni  emissivity line ratios as diagnostics of electron density
between 106 and 108 cm−3, beyond the range of sensitivity of
line ratios from iron ions and lighter species.

The whole set of data reported here can be obtained in elec-
tronic form from the CDS or by request to the authors.
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