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Abstract. As part of the IRON Project, electron impact
excitation effective collision strengths are computed for
the ion Fe xvi familiar in solar spectra. A Breit–Pauli R-
matrix calculation is performed with a 12-level (n ≤ 4)
target representation. The calculation for this relatively
simple ion is approached as a test case where we can an-
alyze in detail most of the effects that contribute to the
accuracy of the collision strengths: the energy mesh, rel-
ativistic corrections, the asymptotic multipole potentials
and contributions from high partial waves. By compar-
ing with two recent independent calculations, an accu-
racy rating of 10% is assigned to the present effective
collision strengths in the electron-temperature range of
105 ≤ T/K ≤ 107.
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1. Introduction

The international collaboration known as the IRON
Project (IP, Hummer et al. 1993; Butler 1996)
is concerned with a systematic treatment of the
electron impact excitation of iron ions. A com-
plete list of previous IP papers is available at
http://www.am.qub.ac.uk/projects/iron/papers/papers.html.

In the present report we discuss the results for Fe xvi,
an important ion in solar physics. Behring et al. (1976)
identified some Fe xvi emission lines in the solar spectrum
taken by a rocket-borne spectrograph in 1973. Sandlin
et al. (1976) and Dere (1978) report on these lines with
an accuracy of 0.03 Å. More recently, Thomas & Neupert
(1994) have shown that all five transitions between the
n = 3 configurations appear in the spectrum of an active
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region taken by the Solar EUV Rocket Telescope and
Spectograph (SERTS) in its 1989 flight at λλ 251.067,
262.978, 265.018, 335.401 and 360.754 Å, measured with
a precision of 5 mÅ. Young et al. (1998) have confirmed
these identifications, and give some branching ratios and
emission line ratios that are insensitive to density and
temperature for these lines using the CHIANTI atomic
data.

Emission-line ratios derived from transitions in Fe xvi

can be used as diagnostics in high-temperature plasmas
such as the corona, active regions and flares (Flower &
Nussbaumer 1975; Vernazza & Reeves 1978; Dere 1978,
1982; Mason & Monsignori Fossi 1994; Dere et al. 1997;
Brosius et al. 1997a). Keenan et al. (1994) have found good
agreement between the observed and theoretical line ra-
tios when they included the electron excitation rates com-
puted by Tayal (1994) in their calculations. Furthermore,
spatially resolved EUV emission-line profiles of this ion
can be used to detect velocity fields in the low corona
(Neupert et al. 1992); and simultaneous EUV and radio
observations enable the coronal magnetic field structure to
be interpreted (Brosius et al. 1993, 1997b). Fe xvi emis-
sion lines have also been observed in the EUV spectra of
non-supergiant B stars (Cassinelli 1994), of the eclipsing
binary Algol (Stern et al. 1995) and of the nearby K2
dwarf ε Eridani (Schmitt et al. 1996).

As a study object of atomic physics Na-like Fe xvi

is a fairly simple ion. Hence we use this calculation as a
test case to evaluate important effects that must be taken
into account when studying electron impact excitation of
highly ionized iron-group ions. The ultimate aim of the
present work is to produce reliably evaluated collision data
for astrophysical applications. With these goals in mind
we compare the present results with the two most recent
computations for this system: the 10 level close-coupling
approximation by Tayal (1994), which takes into account
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the resonance structure at low energies, and a distorted
wave calculation by Cornille et al. (1997). For reviews of
earlier work see Badnell & Moores (1994) and Dere et al.
(1997).

2. Method

In this work physical processes are described by the
Hamiltonian

HBP = Hnr +Hmass +HDar +Hso, (1)

where Breit–Pauli (BP) contributions of order α2Z4 Ry
are added to the non-relativistic Hamiltonian Hnr; namely
the mass–velocity, one-body Darwin and ordinary spin–
orbit terms. The two-body components of relative BP-
order 1/Z are neglected, which is adequate in our case.
Each term of (1) involves N target electrons and a col-
liding electron, and Hnr includes a central potential due
to an atomic nucleus with charge number Z. Thus ex-
pression (1) can be expanded in terms of states of total
angular momentum and parity Jπ when taking the entire
Hamiltonian, and of states of total spin, orbital angular
momentum and parity SLπ when the contribution Hso is
neglected. We examine results obtained in either of these
coupling schemes; they are connected by vector-coupling
and term-coupling coefficients (TCC) and the transforma-
tion can be carried out at different stages of the calcula-
tion. This in turn affects computer time and accuracy.

2.1. R-matrix techniques

When collision-type trial functions (Burke & Seaton 1971)
are used, the wavefunction for the total system of target
and colliding electron is given by the expansion

ΨJπ = A
∑
i

χi
Fi(r)

r
+
∑
j

cjΦj , (2)

where A is the antisymmetrization operator, χi are vec-
tor coupled products of the target eigenfunctions and
the angular part of the incident-electron functions, and
the Fi(r) are the radial parts of the latter. The func-
tions Φj are bound-type functions of the total system in-
troduced to compensate for orthogonality conditions im-
posed on the Fi(r) and to render short-range correlations.
The Kohn variational principle yields coupled integro-
differential (ID) equations for the radial functions Fi(r)
for each angular symmetry.

R-matrix techniques (Burke et al. 1971; Berrington
et al. 1974, 1978) are employed to solve the ID equations
inside the R-matrix box (for r ≤ a, say).

2.2. Relativistic effects

One way to take relativistic effects into account is to em-
ploy the BP extensions which were first introduced in the

R-matrix method by Scott & Burke (1980) and Scott &
Taylor (1982). The target Hamiltonian is diagonalized in
intermediate coupling. We make use of the resulting TCCs
when recoupling the prior systems with respective SLπ
symmetries to Jπ symmetries, and we add the spin–orbit
contribution from Hso due to the colliding electron.

To match to physical asymptotic boundary conditions
a pair coupling scheme is adopted where the target angular
momentum j is added to the orbital angular momentum l
and spin s of the incident electron through an intermediate
quantum number K (see, for example, Saraph 1972):

j + l = K and K + s = J . (3)

Since spin–orbit coupling is negligible when r ≥ a, no ki-
netic effects enter between the auxiliary states K and to-
tal angular momentum J . We make use of this fact when
deriving expressions for contributions from high angular
momenta.

The other recipe, computationally cheaper, is to first
solve the coupled ID equations in the collisional SLπ sym-
metry. Then, following Saraph (1978), collision strengths
between fine-structure levels are obtained by algebraic re-
coupling of the scattering matrices from LS to pair cou-
pling. The method allows for term mixing via TCCs.
So the relativistic effect of term mixing through spin–
orbit interaction is obtained. However channel energies
are degenerate for fine-structure levels associated with the
same term. This approach will be referred to as the TCC
method.

2.3. Long range potentials

The asymptotic region (r ≥ a) is treated by the perturba-
tive method described by Seaton (1985) and Berrington
et al. (1987). In this region the ID equations reduce to the
ordinary coupled differential equations(

d2

dr2
−
li(li + 1)

r2
+

2z

r
+ εi

)
Fi(r)

−
∑
i′

Vii′(r)Fi′ (r) = 0 , (4)

where z = Z − N is the residual charge of the ion, li
and εi are the channel orbital angular momentum and en-
ergy of the colliding electron (in Rydberg units) and the
quantities Vii′ are long-range multipole potentials. Since
asymptotically |Vii′(r)| � 2z/r, these potentials can be
treated by perturbation techniques. The asymptotic codes
devised for the IP work allow for two options. Option 1:
the potentials Vii′ are included to first order, and Option
0: the potentials Vii′ are neglected. Since computations
with Option 0 are considerably less time consuming, we
investigate its range of validity.

2.4. Contributions from high angular momenta

The high-l contribution to the collision strength (top-
up) for optically allowed (oa) transitions is computed for
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Table 1. Properties of the Fe xvi target orbitals: binding en-
ergy in the potential V (λnl), mean radius, last point of inflec-
tion (both after Schmidt orthogonalization) and cut-off radius
of superstructure output

nl λnl εnl/Ryd 〈r/a0〉 rinfl/a0 rcut/a0

1s 1.3910 −568.3753 0.0589 0.078 1.031
2s 1.0882 −95.8950 0.2649 0.344 0.781
2p 1.0283 −86.9523 0.2325 0.297 0.750
3s 1.0379 −35.5774 0.6811 0.891 0.750
3p 1.0060 −33.0837 0.6707 0.891 0.717
3d 1.0115 −29.6350 0.6134 0.828 0.719
4s 1.0000 −18.7545 1.2862 1.703 1.281
4p 1.0000 −17.8139 1.2903 1.703 1.434
4d 1.0000 −16.5456 1.2589 1.703 1.281
4f 1.0019 −16.0336 1.1197 1.484 1.031

Table 2. Comparison of experimental and theoretical energy
levels (Rydberg units) for the Fe xvi target. Expt: Corliss &
Sugar (1982). Pres: present results. T: Tayal (1994). CDMBB:
Cornille et al. (1997)

i Level Expt Pres T CDMBB

1 3s 2S1/2 0.000 0.000 0.000 0.000
2 3p 2Po

1/2 2.526 2.519 2.552 2.530

3 3p 2Po
3/2 2.717 2.701 2.741 2.716

4 3d 2D3/2 6.156 6.163 6.159 6.179
5 3d 2D5/2 6.182 6.193 6.208 6.209
6 4s 2S1/2 17.019 17.023 17.018 17.017
7 4p 2Po

1/2 18.025 18.017 18.014 18.021

8 4p 2Po
3/2 18.099 18.085 18.091 18.093

9 4d 2D3/2 19.357 19.355 19.370 19.364
10 4d 2D5/2 19.368 19.368 19.389 19.377
11 4f 2Fo

5/2 19.908 19.909 19.914

12 4f 2Fo
7/2 19.913 19.914 19.919

J > Joa
max with a procedure based on the Coulomb–Bethe

approximation (Burgess 1974) and formulated by Burke
& Seaton (1986) in the context of the R-matrix coding.
∞∑

l=λ+1

Ωl,l−1 + Ωl−1,l =

[(
z2

λ2
+ ε2

)
Ωλ,λ−1

−

(
z2

λ2
+ ε1

)
Ωλ−1,λ

]/[
ε1 − ε2

]
(5)

where Ωl,l′ = Ω(i1l, i2l
′). The formulation requires just

two partial collision strengths for each dipole allowed tran-
sition (i1, i2) at some λ ≈ Lmax (n.b. i stands for ΓiSiLi
and S2 = S1 for these transitions). This procedure has
been extended to intermediate coupling and details will
be published elsewhere. For non-allowed (na) transitions
we approximate the top-up for J > Jna

max with a geometric
series. Here Jna

max is the highest J-value for which the ID
equations are solved.

In order to assess the convergence of the partial wave
expansion the resulting collision strengths are analyzed by
means of the scaling techniques developed by Burgess &
Tully (1992). The collision strength Ω(E) is mapped onto

Table 3. Comparison of computed absorption oscillator
strengths fij (length formulation) for the Fe xvi target.
Pres: present results. T: Tayal (1994); CDMBB: Cornille
et al. (1997); FMWY: Fuhr et al. (1981); SZF: Sampson et al.
(1990). Hutton et al. (1988) give experimental values for the
first two entries: 0.115 ± 0.007 and 0.244 ± 0.015

j i Pres T CDMBB FMWY SZF

2 1 0.125 0.127 0.147 0.125 0.124
3 1 0.269 0.272 0.269 0.272 0.269
4 2 0.294 0.291 0.294 0.294 0.291
4 3 0.028 0.028 0.028 0.028 0.028
5 3 0.255 0.253 0.255 0.254 0.251
6 2 0.058 0.059 0.062 0.062 0.060
6 3 0.063 0.064 0.067 0.066 0.064
7 1 0.072 0.071 0.076 0.076 0.079
7 4 0.033 0.033 0.034 0.034 0.034
7 6 0.184 0.185 0.181 0.182
8 1 0.137 0.136 0.144 0.141 0.148
8 4 0.0063 0.063 0.642 0.0065 0.0064
8 5 0.039 0.039 0.039 0.039 0.039
8 6 0.393 0.394 0.389 0.393
9 2 0.293 0.294 0.300 0.300 0.297
9 3 0.031 0.031 0.031 0.031 0.031
9 7 0.473 0.478 0.469 0.466
9 8 0.045 0.045 0.044

10 3 0.277 0.277 0.280 0.280 0.278
10 8 0.406 0.410 0.404 0.402
11 4 0.921 0.923 0.924 0.892
11 5 0.044 0.044 0.044 0.043
11 9 0.114 0.111
11 10 0.0053 0.0052
12 5 0.880 0.881 0.882 0.853
12 10 0.107 0.104

the reduced form Ωr(Er), where the infinite energy range
is scaled to the finite interval (0, 1). For an allowed transi-
tion the scaled parametersEr and Ωr are the dimensionless
quantities

Er = 1−
ln(c)

ln( E
∆E + c)

(6)

Ωr(Er) =
Ω(E)

ln( E
∆E + e)

(7)

with ∆E being the transition energy, E the electron en-
ergy with respect to the reaction threshold and c is an ad-
justable scaling parameter. A key aspect of the approach
by Burgess & Tully lies in the fact that the low as well as
the high energy limits Ωr(0) and Ωr(1) are both finite and
can be computed. For an electric dipole transition these
limits are

Ωr(0) = Ω(0) (8)

Ωr(1) =
4gf

∆E
(9)
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where gf is the weighted oscillator strength (gf -value) for
the transition. This method can also be extended to treat
the effective collision strength

Υ(T ) =

∫ ∞
0

Ω(E) e−E/(κT )d(E/κT ) (10)

through the analogous relations

Tr = 1−
ln(c)

ln( κT∆E + c)
(11)

Υr(Tr) =
Υ(T )

ln( κT∆E + e)
, (12)

where T is the electron temperature and κ the Boltzmann
constant; the limits are

Υr(0) = Ω(0) (13)

Υr(1) = Ωr(1) . (14)

For a forbidden transition similar scaling relations are in-
troduced by

Er =
E

∆E
E

∆E + c
(15)

Ωr(Er) = Ω(E) (16)

Tr =
κT
∆E

κT
∆E + c

(17)

Υr(Tr) = Υ(E) (18)

with the following limits

Ωr(0) = Ω(0) (19)

Ωr(1) = ΩCB (20)

Υr(0) = Ω(0) (21)

Υr(1) = ΩCB (22)

where ΩCB is the Coulomb–Born high-energy limit.

3. Target representation

The Fe xvi target is represented by a 12-level approx-
imation: 3s 2S1/2, 3p 2Po

1/2, 3p 2Po
3/2, 3d 2D3/2, 3d 2D5/2,

4s 2S1/2, 4p 2Po
1/2, 4p 2Po

3/2, 4d 2D3/2, 4d 2D5/2, 4f 2Fo
5/2

and 4f 2Fo
7/2. The wavefunctions are obtained with the

structure code superstructure, originally developed by
Eissner et al. (1974) and generalized by Nussbaumer &
Storey (1978). A summary of the code’s main features is
given by Eissner (1991). In this approach the wavefunc-
tions are expressed in a configuration expansion of the
type

Ψ =
∑
i

φici , (23)

where the basis functions φi are constructed from one-
electron orbitals computed in a Thomas–Fermi–Dirac–
Amaldi statistical model potential V (λ) as described by
Eissner & Nussbaumer (1975) for V (λl) and Nussbaumer
& Storey (1978) for V (λnl). The scaling parameters λnl
are computed variationally so as to minimize the weighted

Fig. 1. Effective collision strength for the 3d 2D5/2 − 4s 2S1/2

transition in Fe xvi computed with different energy
meshes. Crosses: δE/z2 = 5.0 10−5 Ryd. Asterisk:
δE/z2 = 1.0 10−5 Ryd. Circles: δE/z2 = 5.0 10−6 Ryd.
The residual charge of the system is z = 15. It may be
seen that the latter two meshes lead to stable integration
throughout the whole temperature region

Fig. 2. Effective collision strength for the 3p 2Po
1/2 − 3p 2Po

3/2

transition in Fe xvi showing a large difference at low tempera-
tures when the relativistic contributions are taken into account
with the TCC method (crosses) and a Breit–Pauli calculation
(circles)

sum of the non-relativistic term energies. The λnl param-
eters for the present calculation are listed in Table 1 along
with other properties of the target orbitals. Of particular
relevance to the topping-up procedure are the last point
of inflection and the mean radius of each orbital function.
Tabulated radial functions are input to Stage 1 of the R-
matrix code. Beyond the radial distance rcut a Whittaker
expansion can be employed up to the R-matrix radius of
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Fig. 3. Effective collision strength for the 4p 2Po
1/2 − 4d 2D3/2

transition in Fe xvi showing the large difference throughout
the temperature range resulting from different treatments
of the multipole potentials in the asymptotic region, see
Sect. 4.3. Crosses: Option 0, Circles: Option 1

4.0 Bohr radii a0; there the most diffuse orbital (4d) has
decayed to relative magnitude 0.002.

For the present system it is relatively easy to obtain
an accurate target representation. Internal consistency
and comparison with previous calculations and experi-
ment (see Tables 2 and 3) suggest an accuracy of the tar-
get level energies and f -values within the 2% uncertainty
range. Note that levels 9 and 10 are labeled incorrectly in
Table 2 of Tayal (1994), whereas they are tabulated cor-
rectly in the present Table 2. The reported computed os-
cillator strengths for the 4 − 8 transition differ by up to
a factor of 100. Varying the present λnl by as much as
10% would change our f -value of 0.0063 by not more than
20% (while unbalancing the excellent agreement between
length and velocity results). Besides, the present oscillator
strength for this transition agrees closely with the mea-
surement listed in Fuhr et al. (1981) and the theoretical
value obtained by Sampson et al. (1990). Other differences
with the calculation by Cornille et al. (1997), namely for
transitions 1−2, 2−6, 3−6, 1−7 and 1−8 in Table 3, are
small, and they can be explained as the result of alterna-
tive optimization procedures in superstructure such as
different weighting in the variational functional or fewer
variational parameters (perhaps λl rather than λnl).

4. Results

The resulting effective collision strengths for the electron-
temperature range 105 ≤ T/K ≤ 107 are listed in Table 6.
We have used an R-matrix basis of 25 continuum orbitals,
adequate for electron collision energies up to 200 Ryd. In
the following sections each of the effects mentioned in
Sect. 2 is discussed in detail.

Table 4. First point of inflection rinfl/a0 of selected partial
waves associated with M-shell and N-shell channels for 2 en-
ergies measured from the ground state; the respective channel
energies for t > 1 follow from Table 2 on averaging over fine
structure, as t labels a term rather than a level i. Compare
with rinfl from Table 1: 0.9 a0 and 1.7 a0

LS channel 100 Ryd 200 Ryd
t l L = 15 30 45 L = 15 30 45

1 L 1.61 3.17 4.70 1.17 2.27 3.36
2 L− 1 1.52 3.11 4.64 1.11 2.20 3.30

L+ 1 1.73 3.30 4.86 1.27 2.36 3.45
3 L 1.64 3.27 4.83 1.17 2.30 3.39

L+ 2 1.86 3.45 5.05 1.33 2.45 3.55

4 L 1.77 3.45 5.14 1.23 2.36 3.48
6 L 1.77 3.48 5.20 1.23 2.39 3.52
7 L− 3 1.42 3.17 4.89 .984 2.14 3.30

L− 1 1.67 3.39 5.11 1.14 2.30 3.45
L+ 1 1.89 3.61 5.33 1.30 2.45 3.61
L+ 3 2.14 3.86 5.55 1.45 2.61 3.77

4.1. Energy mesh

The low-energy regime of the collision strengths for a
highly ionized system such as Fe xvi is dominated by
series of very narrow resonances. It would be computa-
tionally expensive to calculate such cross sections with
an energy mesh fine enough to resolve all these features.
However a practical choice must ensure stable integration
when the rates are calculated. This is illustrated in Fig. 1,
where the effective collision strength for the transition
3d 2D5/2− 4s 2S1/2 has been plotted when computed with
different mesh sizes. By comparing results obtained with
steps of δE/z2 = 5.0 10−6 Ryd and δE/z2 = 1.0 10−5

Ryd (z = 15 is the residual charge of the ion), it is con-
cluded that the latter mesh size is sufficiently fine while a
mesh with a step of δE/z2 = 5.0 10−5 Ryd can lead to sig-
nificant differences at the lower temperatures. Therefore
cross sections are computed in the energy region below the
highest threshold (4f 2Fo

7/2) with a step of δE/z2 = 1.0

10−5 Ryd. In the region where all channels are open a
wider step of δE/z2 = 1.0 10−3 Ryd is more than ade-
quate.

4.2. Relativistic effects

As mentioned in Sect. 2, relativistic contributions are
taken into account by either of two methods: by diago-
nalizing the Hamiltonian in intermediate coupling using
a Breit–Pauli approximation, or, with less effort, by cal-
culating reactance matrices in LS coupling before trans-
forming to pair coupling using algebraic coefficients and
TCCs. It is found that, for most transitions, effective col-
lision strengths computed with the two methods are in
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Table 5. Ω(3s 2S1/2, 3p 2Po
J) in intermediate and in LS cou-

pling: Columns denoted 017 and 117 give results without and
with multipole coupling respectively. The following 3 columns
test the validity of the top-up formula when CC calculations
go out to J = 17, 15 and 13 respectively. The lowest collision
energy in the Table lies just above the highest target threshold

OPTION(Jmax orLmax)

ε1 J 017 117 217 215 213 113

20 1/2 0.971 1.255 1.499 1.499 1.497 1.077
3/2 1.954 2.454 2.902 2.892 2.878 2.080
LS 2.925 3.711 4.424 4.422 4.419 3.165

50 1/2 0.874 1.032 1.805 1.803 1.800 0.813
3/2 1.736 2.018 3.495 3.487 3.473 1.562
LS 2.615 3.055 5.330 5.325 5.314 2.384

100 1/2 0.732 0.821 2.099 2.095 2.088 0.605
3/2 1.450 1.601 4.082 4.072 4.054 1.157
LS 2.187 2.429 6.208 6.194 6.156 1.773

200 1/2 0.548 0.588 2.391 2.371 2.315 0.386
3/2 1.081 1.144 4.672 4.629 4.516 0.736
ΣJ 1.737 7.063 7.000 6.831 1.122
LS 1.635 1.738 7.063 6.962 6.709 1.130

good agreement. However for some transitions, particu-
larly those arising within a term, the differences at low
temperatures can be sizable as shown in Fig. 2. This is
mainly caused by the neglect of the term energy split-
tings in the TCC method; i.e. energy-degenerate chan-
nels give rise to significantly different resonance patterns.
Therefore it is advisable to adopt the full Breit–Pauli ap-
proach whenever possible.

4.3. Multipole-potential coupling

By comparing effective collision strengths computed with
Options 0 and 1 in the asymptotic codes (see Sect. 2) it
is possible to estimate the contributions from the long -
range multipole potentials in the asymptotic region. Whe-
reas for most forbidden transitions these contributions are
small, it is found essential to include them in allowed tran-
sitions. For instance, it is shown in Fig. 3 that for the al-
lowed transition 4p 2Po

1/2 − 4d 2D3/2 such differences can
be fairly large throughout the temperature range of inter-
est. A similar conclusion can be drawn when comparing
the first two columns on the left in Table 5 which concerns
the transitions 3s 2S1/2− 3p 2Po

J. However it is found that
when Option 1 is used numerical instabilities can crop
up, particularly in the region just below a new threshold,
causing the occasional abnormally high resonance. In the
present work such features are eliminated by plotting the
ratio of the two results with Options 1 and 0 in the reso-
nance region and trimming any feature with a ratio larger
than a factor of 5.

Fig. 4. Reduced collision strength plotted as a function of the
scaled energy of Burgess & Tully (1992) (see Sect. 2) for the
4p 2Po

3/2−4d 2D5/2 optically allowed transition in Fe xvi show-
ing the approach towards the high-energy limit (filled circle).
It may be seen the breakdown that takes place at the higher
energies due to an insufficiently high Joa

max (in this calculation
Joa

max = 40)

4.4. High-l top-up

Perhaps one of the most outstanding difficulties of the
present calculation is the estimate of the contribution from
the high partial waves. Collision strengths for optically al-
lowed transitions must be topped up using the Burgess
sum rules in some way. These rules can only be applied
when the Bethe approximation without unitarization is
valid. This means that the associated radial functions
must have acquired their asymptotic forms. For bound or-
bitals this happens at some distance after their last point
of inflection. For continuum orbitals one must go beyond
their first point of inflection. Last points of inflection for
the present target orbitals are listed in Table 1: rinfl =
0.9 a0 for M-shell electrons, 1.7 a0 for the N-shell. One can
easily obtain an estimate of the first point of inflection of
the continuum orbitals by solving the asymptotic form of
the ID equations for high angular momenta and a range
of energies. To an accuracy well within 10% one can say
that

rinfl ≈ l/k if E � z Ryd and l� 1 . (24)

These trends are illustrated in Table 4.
It is borne out by Table 5 that a ratio of two for the

two competing radii gives acceptable results. Convergence
is excellent once the first point of inflection of the partial
waves appears at three times the radius of the last point
of inflection of the respective target orbital. This condi-
tion is satisfied only at the first two energies for the M-
shell transitions. For transitions involving electrons with
principal quantum number n= 4 though this criterion is
matched only at much higher values of angular momentum
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Fig. 5. Reduced collision strength for the 4s 2S1/2−4p 2Po
1/2 op-

tically allowed transition in Fe xvi. Solid curve: present results.
Crosses: Tayal (1994). Filled squares: Cornille et al. (1997).
Filled circle: high-energy limit. The departure from the ex-
pected approach to the high-energy limit observed in the val-
ues by Tayal are believed to be due to an unreliable geometric
series top-up

l. In the present work we had to cut short the expansion
with respect to angular momenta at Joa

max = 40, fine at
100 Ryd but somewhat tight when approaching 200 Ryd
(see Table 4). It suffices for most transitions in the re-
gion E ≤ 200 Ryd, although for one or two of the more
difficult cases incorrect high-energy tails required trunca-
tion at the breakdown point. This situation is illustrated
in Fig. 4 with the allowed transition 4p 2Po

3/2 − 4d 2D5/2,
where the collision strength is plotted using the scaling
method of Burgess & Tully (1992). It may be seen that
the reduced collision strength at high energies correctly
approaches Ωr(1), but there is a point where this trend
breaks down. This problem can certainly be alleviated
by increasing Joa

max — at serious computational cost. The
slow partial wave convergence in some quadrupole transi-
tions is somewhat similar but not as acute; with a value of
Jna

max = 40 and a geometric series top-up such transitions
are accurately treated.

4.5. Comparison with previous work

The close-coupling calculation performed by Tayal (1994)
for Fe xvi is very similar to the present. A striking dif-
ference lies in his treatment of the high partial waves,
where for the optically allowed transitions a cut-off value
of Joa

max = 15 was adopted and a geometric series top-
up was then implemented. For the forbidden transitions,
on the other hand, Tayal considered the total collision
strengths converged for Jna

max = 15. By contrast we find
in the present work that reliable top-up procedures for

Fig. 6. Comparison of present collision strength (continuous
curve) with those computed by Cornille et al. (1997) (filled
squares). As shown for the transitions 4 − 12 (3d 2D3/2 −
4f 2Fo

7/2) and 6− 9 (4s 2S1/2− 4d 2D3/2), the larger discrepan-
cies are found for the high-energy point at 200 Ryd

some transitions, specially within n = 4 as discussed
above, could only be safely introduced at much higher
values of Joa

max and Jna
max, namely Joa

max = Jna
max ∼ 40. The

convergence of some quadrupole transitions was found to
be unusually slow. Tayal lists collision strengths at 5 en-
ergies in the non-resonant region (22.5, 36.0, 49.5, 67.5
and 90.0 Ryd) and effective collision strengths in the
electron-temperature range 8 105 ≤ T/K ≤ 6 106, thus
facilitating a thorough comparison with present results.
Cornille et al. (1997) have computed collision strengths
for the fine-structure transitions with n ≤ 5 at 4 en-
ergy points in the non-resonant region (26, 50, 100 and
200 Ryd). A distorted wave method with TCC recoupling
is used for Loa

max = Lna
max = 19 at 26 and 50 Ryd, and

Loa
max = Lna

max = 24 at 100 and 200 Ryd. For allowed tran-
sitions the Coulomb–Bethe top-up of Burgess & Shoerey
(1974) is used in the range Loa

max < L ≤ 200. The 3s–nd
quadrupole transitions are topped-up for L > Lna

max with
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Table 6. Present effective collision strength Υij(T ) for the electron impact excitation of Fe xvi

log(T/K)
i j 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0

1 2 1.31+0 1.29+0 1.28+0 1.27+0 1.27+0 1.28+0 1.31+0 1.38+0 1.48+0 1.61+0 1.76+0
1 3 2.41+0 2.43+0 2.44+0 2.46+0 2.48+0 2.51+0 2.57+0 2.70+0 2.90+0 3.15+0 3.43+0
1 4 1.34−1 1.37−1 1.42−1 1.47−1 1.51−1 1.52−1 1.51−1 1.47−1 1.45−1 1.44−1 1.43−1
1 5 1.99−1 2.05−1 2.14−1 2.22−1 2.28−1 2.30−1 2.27−1 2.23−1 2.18−1 2.15−1 2.14−1
1 6 1.38−1 1.27−1 1.18−1 1.10−1 1.04−1 1.00−1 9.84−2 9.80−2 9.85−2 9.96−2 1.01−1
1 7 2.69−2 2.33−2 1.96−2 1.63−2 1.38−2 1.22−2 1.17−2 1.22−2 1.38−2 1.67−2 2.07−2
1 8 4.58−2 4.11−2 3.53−2 2.97−2 2.55−2 2.28−2 2.19−2 2.29−2 2.60−2 3.14−2 3.90−2
1 9 2.58−2 2.32−2 2.11−2 1.96−2 1.87−2 1.84−2 1.87−2 1.94−2 2.07−2 2.24−2 2.43−2
1 10 3.80−2 3.41−2 3.10−2 2.90−2 2.78−2 2.74−2 2.78−2 2.90−2 3.09−2 3.34−2 3.64−2
1 11 3.65−2 3.66−2 3.66−2 3.66−2 3.66−2 3.67−2 3.68−2 3.70−2 3.72−2 3.76−2 3.79−2
1 12 4.87−2 4.88−2 4.88−2 4.88−2 4.89−2 4.89−2 4.91−2 4.93−2 4.97−2 5.01−2 5.06−2
2 3 5.81−1 5.84−1 5.60−1 5.11−1 4.52−1 3.93−1 3.41−1 2.96−1 2.61−1 2.34−1 2.17−1
2 4 1.70+0 1.71+0 1.73+0 1.76+0 1.79+0 1.84+0 1.91+0 2.01+0 2.15+0 2.33+0 2.53+0
2 5 5.72−2 6.25−2 7.29−2 8.41−2 9.18−2 9.26−2 8.34−2 7.34−2 6.27−2 5.41−2 4.70−2
2 6 1.04−1 8.53−2 6.69−2 5.11−2 3.91−2 3.07−2 2.57−2 2.35−2 2.36−2 2.59−2 3.00−2
2 7 1.38−1 1.33−1 1.26−1 1.21−1 1.16−1 1.13−1 1.12−1 1.12−1 1.12−1 1.13−1 1.14−1
2 8 4.37−2 3.94−2 3.40−2 2.86−2 2.42−2 2.10−2 1.88−2 1.77−2 1.73−2 1.75−2 1.81−2
2 9 6.86−2 6.14−2 5.59−2 5.27−2 5.17−2 5.31−2 5.72−2 6.48−2 7.65−2 9.31−2 1.14−1
2 10 2.79−2 2.47−2 2.19−2 1.97−2 1.81−2 1.67−2 1.56−2 1.47−2 1.39−2 1.33−2 1.28−2
2 11 1.07−1 1.08−1 1.10−1 1.12−1 1.15−1 1.19−1 1.26−1 1.34−1 1.44−1 1.55−1 1.68−1
2 12 2.60−2 2.57−2 2.53−2 2.46−2 2.37−2 2.26−2 2.13−2 1.99−2 1.86−2 1.75−2 1.67−2
3 4 4.19−1 4.27−1 4.43−1 4.63−1 4.80−1 4.87−1 4.96−1 5.01−1 5.18−1 5.43−1 5.77−1
3 5 3.17+0 3.20+0 3.24+0 3.31+0 3.37+0 3.45+0 3.56+0 3.75+0 4.00+0 4.32+0 4.70+0
3 6 2.28−1 1.86−1 1.45−1 1.11−1 8.45−2 6.66−2 5.59−2 5.13−2 5.19−2 5.72−2 6.63−2
3 7 5.55−2 4.76−2 3.95−2 3.25−2 2.70−2 2.31−2 2.06−2 1.92−2 1.88−2 1.90−2 1.98−2
3 8 3.34−1 3.19−1 3.00−1 2.82−1 2.68−1 2.58−1 2.53−1 2.51−1 2.52−1 2.55−1 2.58−1
3 9 4.64−2 4.17−2 3.78−2 3.48−2 3.29−2 3.17−2 3.14−2 3.20−2 3.37−2 3.66−2 4.06−2
3 10 1.52−1 1.37−1 1.25−1 1.17−1 1.14−1 1.16−1 1.23−1 1.37−1 1.59−1 1.90−1 2.30−1
3 11 6.53−2 6.52−2 6.50−2 6.48−2 6.45−2 6.43−2 6.44−2 6.49−2 6.62−2 6.83−2 7.09−2
3 12 2.07−1 2.09−1 2.11−1 2.14−1 2.19−1 2.26−1 2.35−1 2.49−1 2.65−1 2.85−1 3.07−1
4 5 2.64−1 2.78−1 3.29−1 4.01−1 4.54−1 4.63−1 4.16−1 3.55−1 2.88−1 2.32−1 1.85−1
4 6 3.42−1 2.68−1 2.02−1 1.48−1 1.06−1 7.59−2 5.47−2 4.06−2 3.16−2 2.59−2 2.26−2
4 7 2.63−1 2.25−1 1.81−1 1.40−1 1.05−1 8.04−2 6.41−2 5.48−2 5.12−2 5.22−2 5.67−2
4 8 1.59−1 1.40−1 1.16−1 9.07−2 6.97−2 5.35−2 4.19−2 3.38−2 2.86−2 2.55−2 2.41−2
4 9 4.53−1 4.04−1 3.64−1 3.35−1 3.14−1 3.00−1 2.91−1 2.86−1 2.84−1 2.83−1 2.84−1
4 10 1.04−1 8.63−2 7.22−2 6.11−2 5.24−2 4.53−2 3.93−2 3.40−2 2.96−2 2.59−2 2.30−2
4 11 9.17−1 9.26−1 9.40−1 9.61−1 9.93−1 1.04+0 1.11+0 1.20+0 1.34+0 1.51+0 1.71+0
4 12 7.91−2 7.75−2 7.52−2 7.19−2 6.76−2 6.21−2 5.58−2 4.92−2 4.28−2 3.71−2 3.23−2
5 6 5.45−1 4.25−1 3.21−1 2.35−1 1.69−1 1.20−1 8.62−2 6.38−2 4.93−2 4.03−2 3.50−2
5 7 1.63−1 1.33−1 1.03−1 7.74−2 5.72−2 4.22−2 3.14−2 2.38−2 1.85−2 1.48−2 1.23−2
5 8 4.89−1 4.29−1 3.49−1 2.71−1 2.07−1 1.59−1 1.27−1 1.08−1 1.00−1 1.00−1 1.06−1
5 9 9.11−2 7.80−2 6.68−2 5.76−2 5.02−2 4.39−2 3.84−2 3.35−2 2.93−2 2.58−2 2.30−2
5 10 7.11−1 6.35−1 5.73−1 5.27−1 4.95−1 4.73−1 4.58−1 4.49−1 4.43−1 4.41−1 4.41−1
5 11 1.51−1 1.50−1 1.48−1 1.46−1 1.44−1 1.41−1 1.40−1 1.39−1 1.42−1 1.48−1 1.58−1
5 12 1.35+0 1.36+0 1.38+0 1.41+0 1.45+0 1.52+0 1.61+0 1.75+0 1.93+0 2.16+0 2.42+0

the program nelma (Cornille et al. 1994) based on a dis-
torted wave approximation without exchange.

It is found that 85% of the collision strengths listed
by Tayal (1994) agree with present results to within 10%.
Large differences (up to 70%) are found, however, for opti-
cally allowed transitions with large collision strengths, in
particular within the n = 4 terms (e.g. 4s−4p, 4p−4d).
This situation is clearly illustrated in Fig. 5 with the
4s 2S1/2 − 4p 2Po

1/2 transition; it may be seen that the

reduced collision strengths by Tayal show an increasing
departure from the expected approach towards the high-
energy limit. This finding seems to indicate that his geo-
metric series top-up for allowed transitions can be unreli-
able at the high energies. On the other hand only 76% of
the collision strengths by Cornille et al. (1997) are within
the 10% level of agreement with the present data. Larger
differences are mainly found towards the higher energies
for the quadrupole transitions not arising from the ground
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Table 6. continued

log(T/K)
i j 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0

6 7 3.25+0 3.22+0 3.39+0 3.69+0 4.07+0 4.50+0 4.98+0 5.50+0 6.08+0 6.70+0 7.33+0
6 8 6.76+0 6.62+0 6.87+0 7.40+0 8.08+0 8.86+0 9.75+0 1.07+1 1.18+1 1.30+1 1.43+1
6 9 5.85−1 5.88−1 5.92−1 5.97−1 6.02−1 6.09−1 6.17−1 6.25−1 6.31−1 6.34−1 6.36−1
6 10 8.81−1 8.83−1 8.86−1 8.92−1 9.00−1 9.10−1 9.22−1 9.33−1 9.43−1 9.49−1 9.51−1
6 11 1.09−1 1.09−1 1.08−1 1.07−1 1.05−1 1.04−1 1.03−1 1.02−1 1.01−1 1.01−1 1.02−1
6 12 1.45−1 1.44−1 1.43−1 1.42−1 1.40−1 1.38−1 1.36−1 1.35−1 1.35−1 1.35−1 1.36−1
7 8 1.51+0 1.35+0 1.20+0 1.08+0 9.86−1 9.16−1 8.62−1 8.21−1 7.88−1 7.60−1 7.37−1
7 9 5.56+0 6.16+0 6.72+0 7.24+0 7.75+0 8.31+0 8.97+0 9.73+0 1.06+1 1.16+1 1.27+1
7 10 1.97−1 1.82−1 1.70−1 1.61−1 1.54−1 1.50−1 1.47−1 1.46−1 1.46−1 1.47−1 1.48−1
7 11 5.84−1 5.87−1 5.90−1 5.95−1 6.00−1 6.05−1 6.11−1 6.17−1 6.21−1 6.23−1 6.23−1
7 12 7.61−2 7.49−2 7.32−2 7.09−2 6.80−2 6.47−2 6.13−2 5.80−2 5.52−2 5.29−2 5.12−2
8 9 1.34+0 1.46+0 1.56+0 1.66+0 1.76+0 1.87+0 2.00+0 2.16+0 2.33+0 2.52+0 2.70+0
8 10 1.02+1 1.13+1 1.23+1 1.33+1 1.42+1 1.53+1 1.65+1 1.78+1 1.94+1 2.11+1 2.27+1
8 11 2.66−1 2.65−1 2.64−1 2.62−1 2.60−1 2.57−1 2.54−1 2.51−1 2.48−1 2.45−1 2.43−1
8 12 1.06+0 1.06+0 1.07+0 1.07+0 1.08+0 1.08+0 1.09+0 1.10+0 1.10+0 1.10+0 1.10+0
9 10 7.32−1 6.70−1 6.16−1 5.71−1 5.33−1 5.01−1 4.73−1 4.49−1 4.28−1 4.10−1 3.96−1
9 11 1.13+1 1.15+1 1.17+1 1.19+1 1.23+1 1.30+1 1.40+1 1.53+1 1.67+1 1.81+1 1.95+1
9 12 1.52−1 1.48−1 1.43−1 1.36−1 1.28−1 1.19−1 1.09−1 1.01−1 9.34−2 8.79−2 8.42−2

10 11 9.82−1 9.89−1 9.97−1 1.01+0 1.03+0 1.07+0 1.13+0 1.21+0 1.31+0 1.40+0 1.49+0
10 12 1.61+1 1.63+1 1.66+1 1.69+1 1.75+1 1.83+1 1.94+1 2.09+1 2.25+1 2.41+1 2.56+1
11 12 5.60−1 5.44−1 5.22−1 4.93−1 4.59−1 4.19−1 3.78−1 3.38−1 3.03−1 2.73−1 2.49−1

state (i.e. 3d−4s and n = n′ = 4) that have not been
topped by Cornille et al. beyond Lna

max. In Fig. 6 we show
two cases where discrepancies at E = 200 Ryd are greater
than 30%; in the transition 3d 2D3/2 − 4f 2Fo

7/2 it is seen
that the agreement is excellent except for the value at
200 Ryd, which is 50% higher; for the 4s 2S1/2 − 4d 2D3/2

the situation is similar, but the high energy point is now
30% lower. The latter pattern is also found in the follow-
ing transitions: 4s 2S1/2−4d 2D5/2; 4p 2Po

1/2−4p 2Po
3/2 and

4p 2Po
1/2 − 4f 2Fo

5/2.

A comparison of the present effective collision
strengths with those tabulated by Tayal (1994) in the
electron-temperature range 8 105 ≤ T/K ≤ 6 106

results in only 61% of the data agreeing to within 10%
(82% to within 20%). In Fig. 7 we show two transitions
with significant differences: 3s 2S1/2 − 4s 2S1/2 (up to a
factor of two) and 3d 2D3/2 − 3d 2D5/2 (37%). Regarding
the former, the high values at the lower temperatures
listed by Tayal are due, in our opinion, to non-physical
resonances caused by the numerical instabilities discussed
in connection with the use of Option 1. The differences
found in the transition within the 3d 2D term are more
difficult to explain. Considerable differences are also
found for 3d 2D5/2 − 4s 2S1/2 and for transitions with
small (< 0.01) effective collision strengths.

5. Discussion

In the calculation of effective collision strengths for the
Na-like ion Fe xvi we have examined in detail several ef-
fects that must be taken into account in order to ensure

a reasonable level of accuracy. In particular the contribu-
tion of the high partial waves for both allowed and for-
bidden transitions has been found difficult to manage, as
the top-up procedures can only be implemented at high
values of the collisional J symmetry. In the present work
we have adopted the values of Joa

max = Jna
max = 40, which

are adequate for most transitions although some of the
allowed ones within the n= 4 complex still presented in-
acccurate high-energy tails that required truncation. We
conclude from detailed comparisons with previous work
that, in spite of the accuracy that is easily reached in
target representation, the level of accuracy of the result-
ing effective collision strengths is probably not better than
10% for Υ > 0.1 and 20% for the smaller ones. This is due
to effects that come into play at high degrees of ionization.
The present dataset is arguably the most reliable to date
since we have made an attempt to identify the sources of
error, and then take care of them so as to maintain accu-
racy. We have thus gained sufficient experience to tackle
some of the more difficult iron ions that are being consid-
ered as part of the IRON Project.
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Fig. 7. Comparison of present effective collision strength (cir-
cles) with those computed by Tayal (1994) (filled squares).
Although good agreement is found for most transitions, there
are cases showing large discrepancies: for instance transition
1 − 6 (3s 2S1/2 − 4s 2S1/2) and transition 4 − 5 (3d 2D3/2 −
3d 2D5/2)
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